Loading…
Functionality of decellularized matrix in cartilage regeneration: A comparison of tissue versus cell sources
[Display omitted] Increasing evidence indicates that decellularized extracellular matrices (dECMs) derived from cartilage tissues (T-dECMs) or chondrocytes/stem cells (C-dECMs) can support proliferation and chondrogenic differentiation of cartilage-forming cells. However, few review papers compare t...
Saved in:
Published in: | Acta biomaterialia 2018-07, Vol.74, p.56-73 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | [Display omitted]
Increasing evidence indicates that decellularized extracellular matrices (dECMs) derived from cartilage tissues (T-dECMs) or chondrocytes/stem cells (C-dECMs) can support proliferation and chondrogenic differentiation of cartilage-forming cells. However, few review papers compare the differences between these dECMs when they serve as substrates for cartilage regeneration. In this review, after an introduction of cartilage immunogenicity and decellularization methods to prepare T-dECMs and C-dECMs, a comprehensive comparison focuses on the effects of T-dECMs and C-dECMs on proliferation and chondrogenic differentiation of chondrocytes/stem cells in vitro and in vivo. Key factors within dECMs, consisting of microarchitecture characteristics and micromechanical properties as well as retained insoluble and soluble matrix components, are discussed in-depth for potential mechanisms underlying the functionality of these dECMs in regulating chondrogenesis. With this information, we hope to benefit dECM based cartilage engineering and tissue regeneration for future clinical application.
The use of decellularized extracellular matrix (dECM) is becoming a promising approach for tissue engineering and regeneration. Compared to dECM derived from cartilage tissue, recently reported dECM from cell sources exhibits a distinct role in cell based cartilage regeneration. In this review paper, for the first time, tissue and cell based dECMs are comprehensively compared for their functionality in cartilage regeneration. This information is expected to provide an update for dECM based cartilage regeneration. |
---|---|
ISSN: | 1742-7061 1878-7568 |
DOI: | 10.1016/j.actbio.2018.04.048 |