Loading…
Experimental Observation of Strong Exciton Effects in Graphene Nanoribbons
Graphene nanoribbons (GNRs) with atomically precise width and edge structures are a promising class of nanomaterials for optoelectronics, thanks to their semiconducting nature and high mobility of charge carriers. Understanding the fundamental static optical properties and ultrafast dynamics of char...
Saved in:
Published in: | Nano letters 2020-05, Vol.20 (5), p.2993-3002 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a515t-c4cb0f7042e54a01b3f6975d9bd7d556a3c52dd57a00f9123037d31817f64e433 |
---|---|
cites | cdi_FETCH-LOGICAL-a515t-c4cb0f7042e54a01b3f6975d9bd7d556a3c52dd57a00f9123037d31817f64e433 |
container_end_page | 3002 |
container_issue | 5 |
container_start_page | 2993 |
container_title | Nano letters |
container_volume | 20 |
creator | Tries, Alexander Osella, Silvio Zhang, Pengfei Xu, Fugui Ramanan, Charusheela Kläui, Mathias Mai, Yiyong Beljonne, David Wang, Hai I |
description | Graphene nanoribbons (GNRs) with atomically precise width and edge structures are a promising class of nanomaterials for optoelectronics, thanks to their semiconducting nature and high mobility of charge carriers. Understanding the fundamental static optical properties and ultrafast dynamics of charge carrier generation in GNRs is essential for optoelectronic applications. Combining THz spectroscopy and theoretical calculations, we report a strong exciton effect with binding energy up to ∼700 meV in liquid-phase-dispersed GNRs with a width of 1.7 nm and an optical band gap of ∼1.6 eV, illustrating the intrinsically strong Coulomb interactions between photogenerated electrons and holes. By tracking the exciton dynamics, we reveal an ultrafast formation of excitons in GNRs with a long lifetime over 100 ps. Our results not only reveal fundamental aspects of excitons in GNRs (strong binding energy and ultrafast exciton formation etc.) but also highlight promising properties of GNRs for optoelectronic devices. |
doi_str_mv | 10.1021/acs.nanolett.9b04816 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7311082</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2383017283</sourcerecordid><originalsourceid>FETCH-LOGICAL-a515t-c4cb0f7042e54a01b3f6975d9bd7d556a3c52dd57a00f9123037d31817f64e433</originalsourceid><addsrcrecordid>eNp9UU1PAyEQJUZj68c_MGaPXloHWJbdi4lp6lcaPahnwrJgt9lCBdrUfy9Na6MXT0Nm3nvzmIfQBYYhBoKvpQpDK63rdIzDqoa8xMUB6mNGYVBUFTncv8u8h05CmAFARRkcox4lBHjFeB89jdcL7du5tlF22UsdtF_J2DqbOZO9Ru_sRzZeqzamztgYrWLIWpvde7mYaquz5-TAt3XtbDhDR0Z2QZ_v6il6vxu_jR4Gk5f7x9HtZCAZZnGgclWD4ZATzXIJuKamqDhrqrrhDWOFpIqRpmFcApgKEwqUNxSXmJsi1zmlp-hmq7tY1nPdqGTdy04s0i-k_xJOtuLvxLZT8eFWglOMoSRJ4Gon4N3nUoco5m1Quuuk1W4ZBKElBcxJudmVb6HKuxC8Nvs1GMQmBpFiED8xiF0MiXb52-Ke9HP3BIAtYEOfuaW36WL_a34D-saYzA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2383017283</pqid></control><display><type>article</type><title>Experimental Observation of Strong Exciton Effects in Graphene Nanoribbons</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Tries, Alexander ; Osella, Silvio ; Zhang, Pengfei ; Xu, Fugui ; Ramanan, Charusheela ; Kläui, Mathias ; Mai, Yiyong ; Beljonne, David ; Wang, Hai I</creator><creatorcontrib>Tries, Alexander ; Osella, Silvio ; Zhang, Pengfei ; Xu, Fugui ; Ramanan, Charusheela ; Kläui, Mathias ; Mai, Yiyong ; Beljonne, David ; Wang, Hai I</creatorcontrib><description>Graphene nanoribbons (GNRs) with atomically precise width and edge structures are a promising class of nanomaterials for optoelectronics, thanks to their semiconducting nature and high mobility of charge carriers. Understanding the fundamental static optical properties and ultrafast dynamics of charge carrier generation in GNRs is essential for optoelectronic applications. Combining THz spectroscopy and theoretical calculations, we report a strong exciton effect with binding energy up to ∼700 meV in liquid-phase-dispersed GNRs with a width of 1.7 nm and an optical band gap of ∼1.6 eV, illustrating the intrinsically strong Coulomb interactions between photogenerated electrons and holes. By tracking the exciton dynamics, we reveal an ultrafast formation of excitons in GNRs with a long lifetime over 100 ps. Our results not only reveal fundamental aspects of excitons in GNRs (strong binding energy and ultrafast exciton formation etc.) but also highlight promising properties of GNRs for optoelectronic devices.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.9b04816</identifier><identifier>PMID: 32207957</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Letter</subject><ispartof>Nano letters, 2020-05, Vol.20 (5), p.2993-3002</ispartof><rights>Copyright © 2020 American Chemical Society 2020 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a515t-c4cb0f7042e54a01b3f6975d9bd7d556a3c52dd57a00f9123037d31817f64e433</citedby><cites>FETCH-LOGICAL-a515t-c4cb0f7042e54a01b3f6975d9bd7d556a3c52dd57a00f9123037d31817f64e433</cites><orcidid>0000-0002-6373-2597 ; 0000-0003-1463-5683 ; 0000-0001-8541-1914 ; 0000-0002-2989-3557 ; 0000-0002-4848-2569 ; 0000-0003-0940-3984</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32207957$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tries, Alexander</creatorcontrib><creatorcontrib>Osella, Silvio</creatorcontrib><creatorcontrib>Zhang, Pengfei</creatorcontrib><creatorcontrib>Xu, Fugui</creatorcontrib><creatorcontrib>Ramanan, Charusheela</creatorcontrib><creatorcontrib>Kläui, Mathias</creatorcontrib><creatorcontrib>Mai, Yiyong</creatorcontrib><creatorcontrib>Beljonne, David</creatorcontrib><creatorcontrib>Wang, Hai I</creatorcontrib><title>Experimental Observation of Strong Exciton Effects in Graphene Nanoribbons</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Graphene nanoribbons (GNRs) with atomically precise width and edge structures are a promising class of nanomaterials for optoelectronics, thanks to their semiconducting nature and high mobility of charge carriers. Understanding the fundamental static optical properties and ultrafast dynamics of charge carrier generation in GNRs is essential for optoelectronic applications. Combining THz spectroscopy and theoretical calculations, we report a strong exciton effect with binding energy up to ∼700 meV in liquid-phase-dispersed GNRs with a width of 1.7 nm and an optical band gap of ∼1.6 eV, illustrating the intrinsically strong Coulomb interactions between photogenerated electrons and holes. By tracking the exciton dynamics, we reveal an ultrafast formation of excitons in GNRs with a long lifetime over 100 ps. Our results not only reveal fundamental aspects of excitons in GNRs (strong binding energy and ultrafast exciton formation etc.) but also highlight promising properties of GNRs for optoelectronic devices.</description><subject>Letter</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UU1PAyEQJUZj68c_MGaPXloHWJbdi4lp6lcaPahnwrJgt9lCBdrUfy9Na6MXT0Nm3nvzmIfQBYYhBoKvpQpDK63rdIzDqoa8xMUB6mNGYVBUFTncv8u8h05CmAFARRkcox4lBHjFeB89jdcL7du5tlF22UsdtF_J2DqbOZO9Ru_sRzZeqzamztgYrWLIWpvde7mYaquz5-TAt3XtbDhDR0Z2QZ_v6il6vxu_jR4Gk5f7x9HtZCAZZnGgclWD4ZATzXIJuKamqDhrqrrhDWOFpIqRpmFcApgKEwqUNxSXmJsi1zmlp-hmq7tY1nPdqGTdy04s0i-k_xJOtuLvxLZT8eFWglOMoSRJ4Gon4N3nUoco5m1Quuuk1W4ZBKElBcxJudmVb6HKuxC8Nvs1GMQmBpFiED8xiF0MiXb52-Ke9HP3BIAtYEOfuaW36WL_a34D-saYzA</recordid><startdate>20200513</startdate><enddate>20200513</enddate><creator>Tries, Alexander</creator><creator>Osella, Silvio</creator><creator>Zhang, Pengfei</creator><creator>Xu, Fugui</creator><creator>Ramanan, Charusheela</creator><creator>Kläui, Mathias</creator><creator>Mai, Yiyong</creator><creator>Beljonne, David</creator><creator>Wang, Hai I</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6373-2597</orcidid><orcidid>https://orcid.org/0000-0003-1463-5683</orcidid><orcidid>https://orcid.org/0000-0001-8541-1914</orcidid><orcidid>https://orcid.org/0000-0002-2989-3557</orcidid><orcidid>https://orcid.org/0000-0002-4848-2569</orcidid><orcidid>https://orcid.org/0000-0003-0940-3984</orcidid></search><sort><creationdate>20200513</creationdate><title>Experimental Observation of Strong Exciton Effects in Graphene Nanoribbons</title><author>Tries, Alexander ; Osella, Silvio ; Zhang, Pengfei ; Xu, Fugui ; Ramanan, Charusheela ; Kläui, Mathias ; Mai, Yiyong ; Beljonne, David ; Wang, Hai I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a515t-c4cb0f7042e54a01b3f6975d9bd7d556a3c52dd57a00f9123037d31817f64e433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Letter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tries, Alexander</creatorcontrib><creatorcontrib>Osella, Silvio</creatorcontrib><creatorcontrib>Zhang, Pengfei</creatorcontrib><creatorcontrib>Xu, Fugui</creatorcontrib><creatorcontrib>Ramanan, Charusheela</creatorcontrib><creatorcontrib>Kläui, Mathias</creatorcontrib><creatorcontrib>Mai, Yiyong</creatorcontrib><creatorcontrib>Beljonne, David</creatorcontrib><creatorcontrib>Wang, Hai I</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tries, Alexander</au><au>Osella, Silvio</au><au>Zhang, Pengfei</au><au>Xu, Fugui</au><au>Ramanan, Charusheela</au><au>Kläui, Mathias</au><au>Mai, Yiyong</au><au>Beljonne, David</au><au>Wang, Hai I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental Observation of Strong Exciton Effects in Graphene Nanoribbons</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2020-05-13</date><risdate>2020</risdate><volume>20</volume><issue>5</issue><spage>2993</spage><epage>3002</epage><pages>2993-3002</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Graphene nanoribbons (GNRs) with atomically precise width and edge structures are a promising class of nanomaterials for optoelectronics, thanks to their semiconducting nature and high mobility of charge carriers. Understanding the fundamental static optical properties and ultrafast dynamics of charge carrier generation in GNRs is essential for optoelectronic applications. Combining THz spectroscopy and theoretical calculations, we report a strong exciton effect with binding energy up to ∼700 meV in liquid-phase-dispersed GNRs with a width of 1.7 nm and an optical band gap of ∼1.6 eV, illustrating the intrinsically strong Coulomb interactions between photogenerated electrons and holes. By tracking the exciton dynamics, we reveal an ultrafast formation of excitons in GNRs with a long lifetime over 100 ps. Our results not only reveal fundamental aspects of excitons in GNRs (strong binding energy and ultrafast exciton formation etc.) but also highlight promising properties of GNRs for optoelectronic devices.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32207957</pmid><doi>10.1021/acs.nanolett.9b04816</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6373-2597</orcidid><orcidid>https://orcid.org/0000-0003-1463-5683</orcidid><orcidid>https://orcid.org/0000-0001-8541-1914</orcidid><orcidid>https://orcid.org/0000-0002-2989-3557</orcidid><orcidid>https://orcid.org/0000-0002-4848-2569</orcidid><orcidid>https://orcid.org/0000-0003-0940-3984</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-6984 |
ispartof | Nano letters, 2020-05, Vol.20 (5), p.2993-3002 |
issn | 1530-6984 1530-6992 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7311082 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Letter |
title | Experimental Observation of Strong Exciton Effects in Graphene Nanoribbons |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T17%3A54%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20Observation%20of%20Strong%20Exciton%20Effects%20in%20Graphene%20Nanoribbons&rft.jtitle=Nano%20letters&rft.au=Tries,%20Alexander&rft.date=2020-05-13&rft.volume=20&rft.issue=5&rft.spage=2993&rft.epage=3002&rft.pages=2993-3002&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.9b04816&rft_dat=%3Cproquest_pubme%3E2383017283%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a515t-c4cb0f7042e54a01b3f6975d9bd7d556a3c52dd57a00f9123037d31817f64e433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2383017283&rft_id=info:pmid/32207957&rfr_iscdi=true |