Loading…

Experimental Observation of Strong Exciton Effects in Graphene Nanoribbons

Graphene nanoribbons (GNRs) with atomically precise width and edge structures are a promising class of nanomaterials for optoelectronics, thanks to their semiconducting nature and high mobility of charge carriers. Understanding the fundamental static optical properties and ultrafast dynamics of char...

Full description

Saved in:
Bibliographic Details
Published in:Nano letters 2020-05, Vol.20 (5), p.2993-3002
Main Authors: Tries, Alexander, Osella, Silvio, Zhang, Pengfei, Xu, Fugui, Ramanan, Charusheela, Kläui, Mathias, Mai, Yiyong, Beljonne, David, Wang, Hai I
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a515t-c4cb0f7042e54a01b3f6975d9bd7d556a3c52dd57a00f9123037d31817f64e433
cites cdi_FETCH-LOGICAL-a515t-c4cb0f7042e54a01b3f6975d9bd7d556a3c52dd57a00f9123037d31817f64e433
container_end_page 3002
container_issue 5
container_start_page 2993
container_title Nano letters
container_volume 20
creator Tries, Alexander
Osella, Silvio
Zhang, Pengfei
Xu, Fugui
Ramanan, Charusheela
Kläui, Mathias
Mai, Yiyong
Beljonne, David
Wang, Hai I
description Graphene nanoribbons (GNRs) with atomically precise width and edge structures are a promising class of nanomaterials for optoelectronics, thanks to their semiconducting nature and high mobility of charge carriers. Understanding the fundamental static optical properties and ultrafast dynamics of charge carrier generation in GNRs is essential for optoelectronic applications. Combining THz spectroscopy and theoretical calculations, we report a strong exciton effect with binding energy up to ∼700 meV in liquid-phase-dispersed GNRs with a width of 1.7 nm and an optical band gap of ∼1.6 eV, illustrating the intrinsically strong Coulomb interactions between photogenerated electrons and holes. By tracking the exciton dynamics, we reveal an ultrafast formation of excitons in GNRs with a long lifetime over 100 ps. Our results not only reveal fundamental aspects of excitons in GNRs (strong binding energy and ultrafast exciton formation etc.) but also highlight promising properties of GNRs for optoelectronic devices.
doi_str_mv 10.1021/acs.nanolett.9b04816
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7311082</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2383017283</sourcerecordid><originalsourceid>FETCH-LOGICAL-a515t-c4cb0f7042e54a01b3f6975d9bd7d556a3c52dd57a00f9123037d31817f64e433</originalsourceid><addsrcrecordid>eNp9UU1PAyEQJUZj68c_MGaPXloHWJbdi4lp6lcaPahnwrJgt9lCBdrUfy9Na6MXT0Nm3nvzmIfQBYYhBoKvpQpDK63rdIzDqoa8xMUB6mNGYVBUFTncv8u8h05CmAFARRkcox4lBHjFeB89jdcL7du5tlF22UsdtF_J2DqbOZO9Ru_sRzZeqzamztgYrWLIWpvde7mYaquz5-TAt3XtbDhDR0Z2QZ_v6il6vxu_jR4Gk5f7x9HtZCAZZnGgclWD4ZATzXIJuKamqDhrqrrhDWOFpIqRpmFcApgKEwqUNxSXmJsi1zmlp-hmq7tY1nPdqGTdy04s0i-k_xJOtuLvxLZT8eFWglOMoSRJ4Gon4N3nUoco5m1Quuuk1W4ZBKElBcxJudmVb6HKuxC8Nvs1GMQmBpFiED8xiF0MiXb52-Ke9HP3BIAtYEOfuaW36WL_a34D-saYzA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2383017283</pqid></control><display><type>article</type><title>Experimental Observation of Strong Exciton Effects in Graphene Nanoribbons</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Tries, Alexander ; Osella, Silvio ; Zhang, Pengfei ; Xu, Fugui ; Ramanan, Charusheela ; Kläui, Mathias ; Mai, Yiyong ; Beljonne, David ; Wang, Hai I</creator><creatorcontrib>Tries, Alexander ; Osella, Silvio ; Zhang, Pengfei ; Xu, Fugui ; Ramanan, Charusheela ; Kläui, Mathias ; Mai, Yiyong ; Beljonne, David ; Wang, Hai I</creatorcontrib><description>Graphene nanoribbons (GNRs) with atomically precise width and edge structures are a promising class of nanomaterials for optoelectronics, thanks to their semiconducting nature and high mobility of charge carriers. Understanding the fundamental static optical properties and ultrafast dynamics of charge carrier generation in GNRs is essential for optoelectronic applications. Combining THz spectroscopy and theoretical calculations, we report a strong exciton effect with binding energy up to ∼700 meV in liquid-phase-dispersed GNRs with a width of 1.7 nm and an optical band gap of ∼1.6 eV, illustrating the intrinsically strong Coulomb interactions between photogenerated electrons and holes. By tracking the exciton dynamics, we reveal an ultrafast formation of excitons in GNRs with a long lifetime over 100 ps. Our results not only reveal fundamental aspects of excitons in GNRs (strong binding energy and ultrafast exciton formation etc.) but also highlight promising properties of GNRs for optoelectronic devices.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.9b04816</identifier><identifier>PMID: 32207957</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Letter</subject><ispartof>Nano letters, 2020-05, Vol.20 (5), p.2993-3002</ispartof><rights>Copyright © 2020 American Chemical Society 2020 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a515t-c4cb0f7042e54a01b3f6975d9bd7d556a3c52dd57a00f9123037d31817f64e433</citedby><cites>FETCH-LOGICAL-a515t-c4cb0f7042e54a01b3f6975d9bd7d556a3c52dd57a00f9123037d31817f64e433</cites><orcidid>0000-0002-6373-2597 ; 0000-0003-1463-5683 ; 0000-0001-8541-1914 ; 0000-0002-2989-3557 ; 0000-0002-4848-2569 ; 0000-0003-0940-3984</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32207957$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tries, Alexander</creatorcontrib><creatorcontrib>Osella, Silvio</creatorcontrib><creatorcontrib>Zhang, Pengfei</creatorcontrib><creatorcontrib>Xu, Fugui</creatorcontrib><creatorcontrib>Ramanan, Charusheela</creatorcontrib><creatorcontrib>Kläui, Mathias</creatorcontrib><creatorcontrib>Mai, Yiyong</creatorcontrib><creatorcontrib>Beljonne, David</creatorcontrib><creatorcontrib>Wang, Hai I</creatorcontrib><title>Experimental Observation of Strong Exciton Effects in Graphene Nanoribbons</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Graphene nanoribbons (GNRs) with atomically precise width and edge structures are a promising class of nanomaterials for optoelectronics, thanks to their semiconducting nature and high mobility of charge carriers. Understanding the fundamental static optical properties and ultrafast dynamics of charge carrier generation in GNRs is essential for optoelectronic applications. Combining THz spectroscopy and theoretical calculations, we report a strong exciton effect with binding energy up to ∼700 meV in liquid-phase-dispersed GNRs with a width of 1.7 nm and an optical band gap of ∼1.6 eV, illustrating the intrinsically strong Coulomb interactions between photogenerated electrons and holes. By tracking the exciton dynamics, we reveal an ultrafast formation of excitons in GNRs with a long lifetime over 100 ps. Our results not only reveal fundamental aspects of excitons in GNRs (strong binding energy and ultrafast exciton formation etc.) but also highlight promising properties of GNRs for optoelectronic devices.</description><subject>Letter</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UU1PAyEQJUZj68c_MGaPXloHWJbdi4lp6lcaPahnwrJgt9lCBdrUfy9Na6MXT0Nm3nvzmIfQBYYhBoKvpQpDK63rdIzDqoa8xMUB6mNGYVBUFTncv8u8h05CmAFARRkcox4lBHjFeB89jdcL7du5tlF22UsdtF_J2DqbOZO9Ru_sRzZeqzamztgYrWLIWpvde7mYaquz5-TAt3XtbDhDR0Z2QZ_v6il6vxu_jR4Gk5f7x9HtZCAZZnGgclWD4ZATzXIJuKamqDhrqrrhDWOFpIqRpmFcApgKEwqUNxSXmJsi1zmlp-hmq7tY1nPdqGTdy04s0i-k_xJOtuLvxLZT8eFWglOMoSRJ4Gon4N3nUoco5m1Quuuk1W4ZBKElBcxJudmVb6HKuxC8Nvs1GMQmBpFiED8xiF0MiXb52-Ke9HP3BIAtYEOfuaW36WL_a34D-saYzA</recordid><startdate>20200513</startdate><enddate>20200513</enddate><creator>Tries, Alexander</creator><creator>Osella, Silvio</creator><creator>Zhang, Pengfei</creator><creator>Xu, Fugui</creator><creator>Ramanan, Charusheela</creator><creator>Kläui, Mathias</creator><creator>Mai, Yiyong</creator><creator>Beljonne, David</creator><creator>Wang, Hai I</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6373-2597</orcidid><orcidid>https://orcid.org/0000-0003-1463-5683</orcidid><orcidid>https://orcid.org/0000-0001-8541-1914</orcidid><orcidid>https://orcid.org/0000-0002-2989-3557</orcidid><orcidid>https://orcid.org/0000-0002-4848-2569</orcidid><orcidid>https://orcid.org/0000-0003-0940-3984</orcidid></search><sort><creationdate>20200513</creationdate><title>Experimental Observation of Strong Exciton Effects in Graphene Nanoribbons</title><author>Tries, Alexander ; Osella, Silvio ; Zhang, Pengfei ; Xu, Fugui ; Ramanan, Charusheela ; Kläui, Mathias ; Mai, Yiyong ; Beljonne, David ; Wang, Hai I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a515t-c4cb0f7042e54a01b3f6975d9bd7d556a3c52dd57a00f9123037d31817f64e433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Letter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tries, Alexander</creatorcontrib><creatorcontrib>Osella, Silvio</creatorcontrib><creatorcontrib>Zhang, Pengfei</creatorcontrib><creatorcontrib>Xu, Fugui</creatorcontrib><creatorcontrib>Ramanan, Charusheela</creatorcontrib><creatorcontrib>Kläui, Mathias</creatorcontrib><creatorcontrib>Mai, Yiyong</creatorcontrib><creatorcontrib>Beljonne, David</creatorcontrib><creatorcontrib>Wang, Hai I</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tries, Alexander</au><au>Osella, Silvio</au><au>Zhang, Pengfei</au><au>Xu, Fugui</au><au>Ramanan, Charusheela</au><au>Kläui, Mathias</au><au>Mai, Yiyong</au><au>Beljonne, David</au><au>Wang, Hai I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental Observation of Strong Exciton Effects in Graphene Nanoribbons</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2020-05-13</date><risdate>2020</risdate><volume>20</volume><issue>5</issue><spage>2993</spage><epage>3002</epage><pages>2993-3002</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Graphene nanoribbons (GNRs) with atomically precise width and edge structures are a promising class of nanomaterials for optoelectronics, thanks to their semiconducting nature and high mobility of charge carriers. Understanding the fundamental static optical properties and ultrafast dynamics of charge carrier generation in GNRs is essential for optoelectronic applications. Combining THz spectroscopy and theoretical calculations, we report a strong exciton effect with binding energy up to ∼700 meV in liquid-phase-dispersed GNRs with a width of 1.7 nm and an optical band gap of ∼1.6 eV, illustrating the intrinsically strong Coulomb interactions between photogenerated electrons and holes. By tracking the exciton dynamics, we reveal an ultrafast formation of excitons in GNRs with a long lifetime over 100 ps. Our results not only reveal fundamental aspects of excitons in GNRs (strong binding energy and ultrafast exciton formation etc.) but also highlight promising properties of GNRs for optoelectronic devices.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32207957</pmid><doi>10.1021/acs.nanolett.9b04816</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6373-2597</orcidid><orcidid>https://orcid.org/0000-0003-1463-5683</orcidid><orcidid>https://orcid.org/0000-0001-8541-1914</orcidid><orcidid>https://orcid.org/0000-0002-2989-3557</orcidid><orcidid>https://orcid.org/0000-0002-4848-2569</orcidid><orcidid>https://orcid.org/0000-0003-0940-3984</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2020-05, Vol.20 (5), p.2993-3002
issn 1530-6984
1530-6992
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7311082
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Letter
title Experimental Observation of Strong Exciton Effects in Graphene Nanoribbons
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T17%3A54%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20Observation%20of%20Strong%20Exciton%20Effects%20in%20Graphene%20Nanoribbons&rft.jtitle=Nano%20letters&rft.au=Tries,%20Alexander&rft.date=2020-05-13&rft.volume=20&rft.issue=5&rft.spage=2993&rft.epage=3002&rft.pages=2993-3002&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.9b04816&rft_dat=%3Cproquest_pubme%3E2383017283%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a515t-c4cb0f7042e54a01b3f6975d9bd7d556a3c52dd57a00f9123037d31817f64e433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2383017283&rft_id=info:pmid/32207957&rfr_iscdi=true