Loading…

Checkpoint Responses to DNA Double-Strand Breaks

Cells confront DNA damage in every cell cycle. Among the most deleterious types of DNA damage are DNA double-strand breaks (DSBs), which can cause cell lethality if unrepaired or cancers if improperly repaired. In response to DNA DSBs, cells activate a complex DNA damage checkpoint (DDC) response th...

Full description

Saved in:
Bibliographic Details
Published in:Annual review of biochemistry 2020-06, Vol.89 (1), p.103-133
Main Authors: Waterman, David P, Haber, James E, Smolka, Marcus B
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a588t-7412ba2d84b02e512ac3c814350ee85be6043e1488b00053ef30c05a01266fca3
cites cdi_FETCH-LOGICAL-a588t-7412ba2d84b02e512ac3c814350ee85be6043e1488b00053ef30c05a01266fca3
container_end_page 133
container_issue 1
container_start_page 103
container_title Annual review of biochemistry
container_volume 89
creator Waterman, David P
Haber, James E
Smolka, Marcus B
description Cells confront DNA damage in every cell cycle. Among the most deleterious types of DNA damage are DNA double-strand breaks (DSBs), which can cause cell lethality if unrepaired or cancers if improperly repaired. In response to DNA DSBs, cells activate a complex DNA damage checkpoint (DDC) response that arrests the cell cycle, reprograms gene expression, and mobilizes DNA repair factors to prevent the inheritance of unrepaired and broken chromosomes. Here we examine the DDC, induced by DNA DSBs, in the budding yeast model system and in mammals.
doi_str_mv 10.1146/annurev-biochem-011520-104722
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7311309</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2378007119</sourcerecordid><originalsourceid>FETCH-LOGICAL-a588t-7412ba2d84b02e512ac3c814350ee85be6043e1488b00053ef30c05a01266fca3</originalsourceid><addsrcrecordid>eNqVkVtrGzEQRkVoSdw0fyEslEJf1M7osis_JJA4vUFIoZdnoZXH9SZryZV2U_rvK7NuaPuWJ4F05tPMHMZeIrxGVPUbF8KY6J63XfRr2nBA1AI4gmqEOGAz1EpzpWH-hM0A6pqrcnPEnuV8CwByrsQhO5ICm1oLNWOwWJO_28YuDNVnytsYMuVqiNXVzUV1Fce2J_5lSC4sq8tE7i4_Z09Xrs90sj-P2bd3b78uPvDrT-8_Li6uudPGDLxRKFonlka1IEijcF56g0pqIDK6pRqUJFTGtKUtLWklwYN2gKKuV97JY3Y-5W7HdkNLT6F00dtt6jYu_bLRdfbfl9Ct7fd4bxuJKGFeAl7tA1L8MVIe7KbLnvreBYpjtkI2BqBB3KEv_kNv45hCGc8KZTQoUZZaqLOJ8inmnGj10AyC3bmxezd278ZObuzkptSf_j3RQ_UfGQW4nIBdjutLUkc_8yN_-Q1hQaSi</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2485042545</pqid></control><display><type>article</type><title>Checkpoint Responses to DNA Double-Strand Breaks</title><source>Annual Reviews</source><creator>Waterman, David P ; Haber, James E ; Smolka, Marcus B</creator><creatorcontrib>Waterman, David P ; Haber, James E ; Smolka, Marcus B</creatorcontrib><description>Cells confront DNA damage in every cell cycle. Among the most deleterious types of DNA damage are DNA double-strand breaks (DSBs), which can cause cell lethality if unrepaired or cancers if improperly repaired. In response to DNA DSBs, cells activate a complex DNA damage checkpoint (DDC) response that arrests the cell cycle, reprograms gene expression, and mobilizes DNA repair factors to prevent the inheritance of unrepaired and broken chromosomes. Here we examine the DDC, induced by DNA DSBs, in the budding yeast model system and in mammals.</description><identifier>ISSN: 0066-4154</identifier><identifier>EISSN: 1545-4509</identifier><identifier>DOI: 10.1146/annurev-biochem-011520-104722</identifier><identifier>PMID: 32176524</identifier><language>eng</language><publisher>United States: Annual Reviews</publisher><subject>Animals ; Ataxia Telangiectasia Mutated Proteins - chemistry ; Ataxia Telangiectasia Mutated Proteins - genetics ; Ataxia Telangiectasia Mutated Proteins - metabolism ; Cell cycle ; Cell Cycle Checkpoints - genetics ; checkpoint ; Checkpoint Kinase 1 - genetics ; Checkpoint Kinase 1 - metabolism ; Checkpoint Kinase 2 - genetics ; Checkpoint Kinase 2 - metabolism ; Chromosomes ; Damage ; Deoxyribonucleic acid ; DNA ; DNA - chemistry ; DNA - genetics ; DNA - metabolism ; DNA Breaks, Double-Stranded ; DNA damage ; DNA double-strand break ; DNA End-Joining Repair ; DNA repair ; Gene expression ; Heredity ; Humans ; kinases ; Lethality ; Models, Molecular ; Phosphatidylinositol 3-Kinases - genetics ; Phosphatidylinositol 3-Kinases - metabolism ; Protein Structure, Secondary ; Recombinational DNA Repair ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Tumor Suppressor Protein p53 - genetics ; Tumor Suppressor Protein p53 - metabolism ; Yeasts</subject><ispartof>Annual review of biochemistry, 2020-06, Vol.89 (1), p.103-133</ispartof><rights>Copyright Annual Reviews, Inc. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a588t-7412ba2d84b02e512ac3c814350ee85be6043e1488b00053ef30c05a01266fca3</citedby><cites>FETCH-LOGICAL-a588t-7412ba2d84b02e512ac3c814350ee85be6043e1488b00053ef30c05a01266fca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.annualreviews.org/content/journals/10.1146/annurev-biochem-011520-104722?crawler=true&amp;mimetype=application/pdf$$EPDF$$P50$$Gannualreviews$$H</linktopdf><linktohtml>$$Uhttps://www.annualreviews.org/content/journals/10.1146/annurev-biochem-011520-104722$$EHTML$$P50$$Gannualreviews$$H</linktohtml><link.rule.ids>70,230,314,776,780,881,4168,27901,27902,77996,77997</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32176524$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Waterman, David P</creatorcontrib><creatorcontrib>Haber, James E</creatorcontrib><creatorcontrib>Smolka, Marcus B</creatorcontrib><title>Checkpoint Responses to DNA Double-Strand Breaks</title><title>Annual review of biochemistry</title><addtitle>Annu Rev Biochem</addtitle><description>Cells confront DNA damage in every cell cycle. Among the most deleterious types of DNA damage are DNA double-strand breaks (DSBs), which can cause cell lethality if unrepaired or cancers if improperly repaired. In response to DNA DSBs, cells activate a complex DNA damage checkpoint (DDC) response that arrests the cell cycle, reprograms gene expression, and mobilizes DNA repair factors to prevent the inheritance of unrepaired and broken chromosomes. Here we examine the DDC, induced by DNA DSBs, in the budding yeast model system and in mammals.</description><subject>Animals</subject><subject>Ataxia Telangiectasia Mutated Proteins - chemistry</subject><subject>Ataxia Telangiectasia Mutated Proteins - genetics</subject><subject>Ataxia Telangiectasia Mutated Proteins - metabolism</subject><subject>Cell cycle</subject><subject>Cell Cycle Checkpoints - genetics</subject><subject>checkpoint</subject><subject>Checkpoint Kinase 1 - genetics</subject><subject>Checkpoint Kinase 1 - metabolism</subject><subject>Checkpoint Kinase 2 - genetics</subject><subject>Checkpoint Kinase 2 - metabolism</subject><subject>Chromosomes</subject><subject>Damage</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA - chemistry</subject><subject>DNA - genetics</subject><subject>DNA - metabolism</subject><subject>DNA Breaks, Double-Stranded</subject><subject>DNA damage</subject><subject>DNA double-strand break</subject><subject>DNA End-Joining Repair</subject><subject>DNA repair</subject><subject>Gene expression</subject><subject>Heredity</subject><subject>Humans</subject><subject>kinases</subject><subject>Lethality</subject><subject>Models, Molecular</subject><subject>Phosphatidylinositol 3-Kinases - genetics</subject><subject>Phosphatidylinositol 3-Kinases - metabolism</subject><subject>Protein Structure, Secondary</subject><subject>Recombinational DNA Repair</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Tumor Suppressor Protein p53 - genetics</subject><subject>Tumor Suppressor Protein p53 - metabolism</subject><subject>Yeasts</subject><issn>0066-4154</issn><issn>1545-4509</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqVkVtrGzEQRkVoSdw0fyEslEJf1M7osis_JJA4vUFIoZdnoZXH9SZryZV2U_rvK7NuaPuWJ4F05tPMHMZeIrxGVPUbF8KY6J63XfRr2nBA1AI4gmqEOGAz1EpzpWH-hM0A6pqrcnPEnuV8CwByrsQhO5ICm1oLNWOwWJO_28YuDNVnytsYMuVqiNXVzUV1Fce2J_5lSC4sq8tE7i4_Z09Xrs90sj-P2bd3b78uPvDrT-8_Li6uudPGDLxRKFonlka1IEijcF56g0pqIDK6pRqUJFTGtKUtLWklwYN2gKKuV97JY3Y-5W7HdkNLT6F00dtt6jYu_bLRdfbfl9Ct7fd4bxuJKGFeAl7tA1L8MVIe7KbLnvreBYpjtkI2BqBB3KEv_kNv45hCGc8KZTQoUZZaqLOJ8inmnGj10AyC3bmxezd278ZObuzkptSf_j3RQ_UfGQW4nIBdjutLUkc_8yN_-Q1hQaSi</recordid><startdate>20200620</startdate><enddate>20200620</enddate><creator>Waterman, David P</creator><creator>Haber, James E</creator><creator>Smolka, Marcus B</creator><general>Annual Reviews</general><general>Annual Reviews, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200620</creationdate><title>Checkpoint Responses to DNA Double-Strand Breaks</title><author>Waterman, David P ; Haber, James E ; Smolka, Marcus B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a588t-7412ba2d84b02e512ac3c814350ee85be6043e1488b00053ef30c05a01266fca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Ataxia Telangiectasia Mutated Proteins - chemistry</topic><topic>Ataxia Telangiectasia Mutated Proteins - genetics</topic><topic>Ataxia Telangiectasia Mutated Proteins - metabolism</topic><topic>Cell cycle</topic><topic>Cell Cycle Checkpoints - genetics</topic><topic>checkpoint</topic><topic>Checkpoint Kinase 1 - genetics</topic><topic>Checkpoint Kinase 1 - metabolism</topic><topic>Checkpoint Kinase 2 - genetics</topic><topic>Checkpoint Kinase 2 - metabolism</topic><topic>Chromosomes</topic><topic>Damage</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA - chemistry</topic><topic>DNA - genetics</topic><topic>DNA - metabolism</topic><topic>DNA Breaks, Double-Stranded</topic><topic>DNA damage</topic><topic>DNA double-strand break</topic><topic>DNA End-Joining Repair</topic><topic>DNA repair</topic><topic>Gene expression</topic><topic>Heredity</topic><topic>Humans</topic><topic>kinases</topic><topic>Lethality</topic><topic>Models, Molecular</topic><topic>Phosphatidylinositol 3-Kinases - genetics</topic><topic>Phosphatidylinositol 3-Kinases - metabolism</topic><topic>Protein Structure, Secondary</topic><topic>Recombinational DNA Repair</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Tumor Suppressor Protein p53 - genetics</topic><topic>Tumor Suppressor Protein p53 - metabolism</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Waterman, David P</creatorcontrib><creatorcontrib>Haber, James E</creatorcontrib><creatorcontrib>Smolka, Marcus B</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Annual review of biochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Waterman, David P</au><au>Haber, James E</au><au>Smolka, Marcus B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Checkpoint Responses to DNA Double-Strand Breaks</atitle><jtitle>Annual review of biochemistry</jtitle><addtitle>Annu Rev Biochem</addtitle><date>2020-06-20</date><risdate>2020</risdate><volume>89</volume><issue>1</issue><spage>103</spage><epage>133</epage><pages>103-133</pages><issn>0066-4154</issn><eissn>1545-4509</eissn><abstract>Cells confront DNA damage in every cell cycle. Among the most deleterious types of DNA damage are DNA double-strand breaks (DSBs), which can cause cell lethality if unrepaired or cancers if improperly repaired. In response to DNA DSBs, cells activate a complex DNA damage checkpoint (DDC) response that arrests the cell cycle, reprograms gene expression, and mobilizes DNA repair factors to prevent the inheritance of unrepaired and broken chromosomes. Here we examine the DDC, induced by DNA DSBs, in the budding yeast model system and in mammals.</abstract><cop>United States</cop><pub>Annual Reviews</pub><pmid>32176524</pmid><doi>10.1146/annurev-biochem-011520-104722</doi><tpages>31</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0066-4154
ispartof Annual review of biochemistry, 2020-06, Vol.89 (1), p.103-133
issn 0066-4154
1545-4509
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7311309
source Annual Reviews
subjects Animals
Ataxia Telangiectasia Mutated Proteins - chemistry
Ataxia Telangiectasia Mutated Proteins - genetics
Ataxia Telangiectasia Mutated Proteins - metabolism
Cell cycle
Cell Cycle Checkpoints - genetics
checkpoint
Checkpoint Kinase 1 - genetics
Checkpoint Kinase 1 - metabolism
Checkpoint Kinase 2 - genetics
Checkpoint Kinase 2 - metabolism
Chromosomes
Damage
Deoxyribonucleic acid
DNA
DNA - chemistry
DNA - genetics
DNA - metabolism
DNA Breaks, Double-Stranded
DNA damage
DNA double-strand break
DNA End-Joining Repair
DNA repair
Gene expression
Heredity
Humans
kinases
Lethality
Models, Molecular
Phosphatidylinositol 3-Kinases - genetics
Phosphatidylinositol 3-Kinases - metabolism
Protein Structure, Secondary
Recombinational DNA Repair
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Tumor Suppressor Protein p53 - genetics
Tumor Suppressor Protein p53 - metabolism
Yeasts
title Checkpoint Responses to DNA Double-Strand Breaks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T13%3A37%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Checkpoint%20Responses%20to%20DNA%20Double-Strand%20Breaks&rft.jtitle=Annual%20review%20of%20biochemistry&rft.au=Waterman,%20David%20P&rft.date=2020-06-20&rft.volume=89&rft.issue=1&rft.spage=103&rft.epage=133&rft.pages=103-133&rft.issn=0066-4154&rft.eissn=1545-4509&rft_id=info:doi/10.1146/annurev-biochem-011520-104722&rft_dat=%3Cproquest_pubme%3E2378007119%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a588t-7412ba2d84b02e512ac3c814350ee85be6043e1488b00053ef30c05a01266fca3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2485042545&rft_id=info:pmid/32176524&rfr_iscdi=true