Loading…
Checkpoint Responses to DNA Double-Strand Breaks
Cells confront DNA damage in every cell cycle. Among the most deleterious types of DNA damage are DNA double-strand breaks (DSBs), which can cause cell lethality if unrepaired or cancers if improperly repaired. In response to DNA DSBs, cells activate a complex DNA damage checkpoint (DDC) response th...
Saved in:
Published in: | Annual review of biochemistry 2020-06, Vol.89 (1), p.103-133 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a588t-7412ba2d84b02e512ac3c814350ee85be6043e1488b00053ef30c05a01266fca3 |
---|---|
cites | cdi_FETCH-LOGICAL-a588t-7412ba2d84b02e512ac3c814350ee85be6043e1488b00053ef30c05a01266fca3 |
container_end_page | 133 |
container_issue | 1 |
container_start_page | 103 |
container_title | Annual review of biochemistry |
container_volume | 89 |
creator | Waterman, David P Haber, James E Smolka, Marcus B |
description | Cells confront DNA damage in every cell cycle. Among the most deleterious types of DNA damage are DNA double-strand breaks (DSBs), which can cause cell lethality if unrepaired or cancers if improperly repaired. In response to DNA DSBs, cells activate a complex DNA damage checkpoint (DDC) response that arrests the cell cycle, reprograms gene expression, and mobilizes DNA repair factors to prevent the inheritance of unrepaired and broken chromosomes. Here we examine the DDC, induced by DNA DSBs, in the budding yeast model system and in mammals. |
doi_str_mv | 10.1146/annurev-biochem-011520-104722 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7311309</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2378007119</sourcerecordid><originalsourceid>FETCH-LOGICAL-a588t-7412ba2d84b02e512ac3c814350ee85be6043e1488b00053ef30c05a01266fca3</originalsourceid><addsrcrecordid>eNqVkVtrGzEQRkVoSdw0fyEslEJf1M7osis_JJA4vUFIoZdnoZXH9SZryZV2U_rvK7NuaPuWJ4F05tPMHMZeIrxGVPUbF8KY6J63XfRr2nBA1AI4gmqEOGAz1EpzpWH-hM0A6pqrcnPEnuV8CwByrsQhO5ICm1oLNWOwWJO_28YuDNVnytsYMuVqiNXVzUV1Fce2J_5lSC4sq8tE7i4_Z09Xrs90sj-P2bd3b78uPvDrT-8_Li6uudPGDLxRKFonlka1IEijcF56g0pqIDK6pRqUJFTGtKUtLWklwYN2gKKuV97JY3Y-5W7HdkNLT6F00dtt6jYu_bLRdfbfl9Ct7fd4bxuJKGFeAl7tA1L8MVIe7KbLnvreBYpjtkI2BqBB3KEv_kNv45hCGc8KZTQoUZZaqLOJ8inmnGj10AyC3bmxezd278ZObuzkptSf_j3RQ_UfGQW4nIBdjutLUkc_8yN_-Q1hQaSi</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2485042545</pqid></control><display><type>article</type><title>Checkpoint Responses to DNA Double-Strand Breaks</title><source>Annual Reviews</source><creator>Waterman, David P ; Haber, James E ; Smolka, Marcus B</creator><creatorcontrib>Waterman, David P ; Haber, James E ; Smolka, Marcus B</creatorcontrib><description>Cells confront DNA damage in every cell cycle. Among the most deleterious types of DNA damage are DNA double-strand breaks (DSBs), which can cause cell lethality if unrepaired or cancers if improperly repaired. In response to DNA DSBs, cells activate a complex DNA damage checkpoint (DDC) response that arrests the cell cycle, reprograms gene expression, and mobilizes DNA repair factors to prevent the inheritance of unrepaired and broken chromosomes. Here we examine the DDC, induced by DNA DSBs, in the budding yeast model system and in mammals.</description><identifier>ISSN: 0066-4154</identifier><identifier>EISSN: 1545-4509</identifier><identifier>DOI: 10.1146/annurev-biochem-011520-104722</identifier><identifier>PMID: 32176524</identifier><language>eng</language><publisher>United States: Annual Reviews</publisher><subject>Animals ; Ataxia Telangiectasia Mutated Proteins - chemistry ; Ataxia Telangiectasia Mutated Proteins - genetics ; Ataxia Telangiectasia Mutated Proteins - metabolism ; Cell cycle ; Cell Cycle Checkpoints - genetics ; checkpoint ; Checkpoint Kinase 1 - genetics ; Checkpoint Kinase 1 - metabolism ; Checkpoint Kinase 2 - genetics ; Checkpoint Kinase 2 - metabolism ; Chromosomes ; Damage ; Deoxyribonucleic acid ; DNA ; DNA - chemistry ; DNA - genetics ; DNA - metabolism ; DNA Breaks, Double-Stranded ; DNA damage ; DNA double-strand break ; DNA End-Joining Repair ; DNA repair ; Gene expression ; Heredity ; Humans ; kinases ; Lethality ; Models, Molecular ; Phosphatidylinositol 3-Kinases - genetics ; Phosphatidylinositol 3-Kinases - metabolism ; Protein Structure, Secondary ; Recombinational DNA Repair ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Tumor Suppressor Protein p53 - genetics ; Tumor Suppressor Protein p53 - metabolism ; Yeasts</subject><ispartof>Annual review of biochemistry, 2020-06, Vol.89 (1), p.103-133</ispartof><rights>Copyright Annual Reviews, Inc. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a588t-7412ba2d84b02e512ac3c814350ee85be6043e1488b00053ef30c05a01266fca3</citedby><cites>FETCH-LOGICAL-a588t-7412ba2d84b02e512ac3c814350ee85be6043e1488b00053ef30c05a01266fca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.annualreviews.org/content/journals/10.1146/annurev-biochem-011520-104722?crawler=true&mimetype=application/pdf$$EPDF$$P50$$Gannualreviews$$H</linktopdf><linktohtml>$$Uhttps://www.annualreviews.org/content/journals/10.1146/annurev-biochem-011520-104722$$EHTML$$P50$$Gannualreviews$$H</linktohtml><link.rule.ids>70,230,314,776,780,881,4168,27901,27902,77996,77997</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32176524$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Waterman, David P</creatorcontrib><creatorcontrib>Haber, James E</creatorcontrib><creatorcontrib>Smolka, Marcus B</creatorcontrib><title>Checkpoint Responses to DNA Double-Strand Breaks</title><title>Annual review of biochemistry</title><addtitle>Annu Rev Biochem</addtitle><description>Cells confront DNA damage in every cell cycle. Among the most deleterious types of DNA damage are DNA double-strand breaks (DSBs), which can cause cell lethality if unrepaired or cancers if improperly repaired. In response to DNA DSBs, cells activate a complex DNA damage checkpoint (DDC) response that arrests the cell cycle, reprograms gene expression, and mobilizes DNA repair factors to prevent the inheritance of unrepaired and broken chromosomes. Here we examine the DDC, induced by DNA DSBs, in the budding yeast model system and in mammals.</description><subject>Animals</subject><subject>Ataxia Telangiectasia Mutated Proteins - chemistry</subject><subject>Ataxia Telangiectasia Mutated Proteins - genetics</subject><subject>Ataxia Telangiectasia Mutated Proteins - metabolism</subject><subject>Cell cycle</subject><subject>Cell Cycle Checkpoints - genetics</subject><subject>checkpoint</subject><subject>Checkpoint Kinase 1 - genetics</subject><subject>Checkpoint Kinase 1 - metabolism</subject><subject>Checkpoint Kinase 2 - genetics</subject><subject>Checkpoint Kinase 2 - metabolism</subject><subject>Chromosomes</subject><subject>Damage</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA - chemistry</subject><subject>DNA - genetics</subject><subject>DNA - metabolism</subject><subject>DNA Breaks, Double-Stranded</subject><subject>DNA damage</subject><subject>DNA double-strand break</subject><subject>DNA End-Joining Repair</subject><subject>DNA repair</subject><subject>Gene expression</subject><subject>Heredity</subject><subject>Humans</subject><subject>kinases</subject><subject>Lethality</subject><subject>Models, Molecular</subject><subject>Phosphatidylinositol 3-Kinases - genetics</subject><subject>Phosphatidylinositol 3-Kinases - metabolism</subject><subject>Protein Structure, Secondary</subject><subject>Recombinational DNA Repair</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Tumor Suppressor Protein p53 - genetics</subject><subject>Tumor Suppressor Protein p53 - metabolism</subject><subject>Yeasts</subject><issn>0066-4154</issn><issn>1545-4509</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqVkVtrGzEQRkVoSdw0fyEslEJf1M7osis_JJA4vUFIoZdnoZXH9SZryZV2U_rvK7NuaPuWJ4F05tPMHMZeIrxGVPUbF8KY6J63XfRr2nBA1AI4gmqEOGAz1EpzpWH-hM0A6pqrcnPEnuV8CwByrsQhO5ICm1oLNWOwWJO_28YuDNVnytsYMuVqiNXVzUV1Fce2J_5lSC4sq8tE7i4_Z09Xrs90sj-P2bd3b78uPvDrT-8_Li6uudPGDLxRKFonlka1IEijcF56g0pqIDK6pRqUJFTGtKUtLWklwYN2gKKuV97JY3Y-5W7HdkNLT6F00dtt6jYu_bLRdfbfl9Ct7fd4bxuJKGFeAl7tA1L8MVIe7KbLnvreBYpjtkI2BqBB3KEv_kNv45hCGc8KZTQoUZZaqLOJ8inmnGj10AyC3bmxezd278ZObuzkptSf_j3RQ_UfGQW4nIBdjutLUkc_8yN_-Q1hQaSi</recordid><startdate>20200620</startdate><enddate>20200620</enddate><creator>Waterman, David P</creator><creator>Haber, James E</creator><creator>Smolka, Marcus B</creator><general>Annual Reviews</general><general>Annual Reviews, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200620</creationdate><title>Checkpoint Responses to DNA Double-Strand Breaks</title><author>Waterman, David P ; Haber, James E ; Smolka, Marcus B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a588t-7412ba2d84b02e512ac3c814350ee85be6043e1488b00053ef30c05a01266fca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Ataxia Telangiectasia Mutated Proteins - chemistry</topic><topic>Ataxia Telangiectasia Mutated Proteins - genetics</topic><topic>Ataxia Telangiectasia Mutated Proteins - metabolism</topic><topic>Cell cycle</topic><topic>Cell Cycle Checkpoints - genetics</topic><topic>checkpoint</topic><topic>Checkpoint Kinase 1 - genetics</topic><topic>Checkpoint Kinase 1 - metabolism</topic><topic>Checkpoint Kinase 2 - genetics</topic><topic>Checkpoint Kinase 2 - metabolism</topic><topic>Chromosomes</topic><topic>Damage</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA - chemistry</topic><topic>DNA - genetics</topic><topic>DNA - metabolism</topic><topic>DNA Breaks, Double-Stranded</topic><topic>DNA damage</topic><topic>DNA double-strand break</topic><topic>DNA End-Joining Repair</topic><topic>DNA repair</topic><topic>Gene expression</topic><topic>Heredity</topic><topic>Humans</topic><topic>kinases</topic><topic>Lethality</topic><topic>Models, Molecular</topic><topic>Phosphatidylinositol 3-Kinases - genetics</topic><topic>Phosphatidylinositol 3-Kinases - metabolism</topic><topic>Protein Structure, Secondary</topic><topic>Recombinational DNA Repair</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Tumor Suppressor Protein p53 - genetics</topic><topic>Tumor Suppressor Protein p53 - metabolism</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Waterman, David P</creatorcontrib><creatorcontrib>Haber, James E</creatorcontrib><creatorcontrib>Smolka, Marcus B</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Annual review of biochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Waterman, David P</au><au>Haber, James E</au><au>Smolka, Marcus B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Checkpoint Responses to DNA Double-Strand Breaks</atitle><jtitle>Annual review of biochemistry</jtitle><addtitle>Annu Rev Biochem</addtitle><date>2020-06-20</date><risdate>2020</risdate><volume>89</volume><issue>1</issue><spage>103</spage><epage>133</epage><pages>103-133</pages><issn>0066-4154</issn><eissn>1545-4509</eissn><abstract>Cells confront DNA damage in every cell cycle. Among the most deleterious types of DNA damage are DNA double-strand breaks (DSBs), which can cause cell lethality if unrepaired or cancers if improperly repaired. In response to DNA DSBs, cells activate a complex DNA damage checkpoint (DDC) response that arrests the cell cycle, reprograms gene expression, and mobilizes DNA repair factors to prevent the inheritance of unrepaired and broken chromosomes. Here we examine the DDC, induced by DNA DSBs, in the budding yeast model system and in mammals.</abstract><cop>United States</cop><pub>Annual Reviews</pub><pmid>32176524</pmid><doi>10.1146/annurev-biochem-011520-104722</doi><tpages>31</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0066-4154 |
ispartof | Annual review of biochemistry, 2020-06, Vol.89 (1), p.103-133 |
issn | 0066-4154 1545-4509 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7311309 |
source | Annual Reviews |
subjects | Animals Ataxia Telangiectasia Mutated Proteins - chemistry Ataxia Telangiectasia Mutated Proteins - genetics Ataxia Telangiectasia Mutated Proteins - metabolism Cell cycle Cell Cycle Checkpoints - genetics checkpoint Checkpoint Kinase 1 - genetics Checkpoint Kinase 1 - metabolism Checkpoint Kinase 2 - genetics Checkpoint Kinase 2 - metabolism Chromosomes Damage Deoxyribonucleic acid DNA DNA - chemistry DNA - genetics DNA - metabolism DNA Breaks, Double-Stranded DNA damage DNA double-strand break DNA End-Joining Repair DNA repair Gene expression Heredity Humans kinases Lethality Models, Molecular Phosphatidylinositol 3-Kinases - genetics Phosphatidylinositol 3-Kinases - metabolism Protein Structure, Secondary Recombinational DNA Repair Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae Proteins - genetics Saccharomyces cerevisiae Proteins - metabolism Tumor Suppressor Protein p53 - genetics Tumor Suppressor Protein p53 - metabolism Yeasts |
title | Checkpoint Responses to DNA Double-Strand Breaks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T13%3A37%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Checkpoint%20Responses%20to%20DNA%20Double-Strand%20Breaks&rft.jtitle=Annual%20review%20of%20biochemistry&rft.au=Waterman,%20David%20P&rft.date=2020-06-20&rft.volume=89&rft.issue=1&rft.spage=103&rft.epage=133&rft.pages=103-133&rft.issn=0066-4154&rft.eissn=1545-4509&rft_id=info:doi/10.1146/annurev-biochem-011520-104722&rft_dat=%3Cproquest_pubme%3E2378007119%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a588t-7412ba2d84b02e512ac3c814350ee85be6043e1488b00053ef30c05a01266fca3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2485042545&rft_id=info:pmid/32176524&rfr_iscdi=true |