Loading…
Hydrogel-based milliwell arrays for standardized and scalable retinal organoid cultures
The development of improved methods to culture retinal organoids is relevant for the investigation of mechanisms of retinal development under pathophysiological conditions, for screening of neuroprotective compounds, and for providing a cellular source for clinical transplantation. We report a tissu...
Saved in:
Published in: | Scientific reports 2020-06, Vol.10 (1), p.10275-10275, Article 10275 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c577t-4fb4a7be3cc6ee6bf38bcb35752a3128612add2954dff6c7a447acbcd1370e683 |
---|---|
cites | cdi_FETCH-LOGICAL-c577t-4fb4a7be3cc6ee6bf38bcb35752a3128612add2954dff6c7a447acbcd1370e683 |
container_end_page | 10275 |
container_issue | 1 |
container_start_page | 10275 |
container_title | Scientific reports |
container_volume | 10 |
creator | Decembrini, S. Hoehnel, S. Brandenberg, N. Arsenijevic, Y. Lutolf, M. P. |
description | The development of improved methods to culture retinal organoids is relevant for the investigation of mechanisms of retinal development under pathophysiological conditions, for screening of neuroprotective compounds, and for providing a cellular source for clinical transplantation. We report a tissue-engineering approach to accelerate and standardize the production of retinal organoids by culturing mouse embryonic stem cells (mESC) in optimal physico-chemical microenvironments. Arrayed round-bottom milliwells composed of biomimetic hydrogels, combined with an optimized medium formulation, promoted the rapid generation of retina-like tissue from mESC aggregates in a highly efficient and stereotypical manner: ∼93% of the aggregates contained retinal organoid structures. 26 day-old retinal organoids were composed of ∼80% of photoreceptors, of which ∼22% are GNAT2-positive cones, an important and rare sensory cell type that is difficult to study in rodent models. The compartmentalization of retinal organoids into predefined locations on a two-dimensional array not only allowed us to derive almost all aggregates into retinal organoids, but also to reliably capture the dynamics of individual organoids, an advantageous requirement for high-throughput experimentation. Our improved retinal organoid culture system should be useful for applications that require scalability and single-organoid traceability. |
doi_str_mv | 10.1038/s41598-020-67012-7 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7314858</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2417393005</sourcerecordid><originalsourceid>FETCH-LOGICAL-c577t-4fb4a7be3cc6ee6bf38bcb35752a3128612add2954dff6c7a447acbcd1370e683</originalsourceid><addsrcrecordid>eNp9kc9PFTEQxxuDAfLkH_BgNuHCZbE_t7sXEkJUSEi8aDw203b2WdK3xXZX8_zrLTxA8OBcOsl85tuZ-RLyltFTRkX_vkimhr6lnLadpoy3-hU55FSqlgvO957lB-SolBtaQ_FBsmGfHAiuesaFOCTfLrc-pzXG1kJB32xCjOEXxthAzrAtzZhyU2aYPGQffleipk1xEMFGbDLOYYLYpLyGKQXfuCXOS8byhrweIRY8enhX5OvHD18uLtvrz5-uLs6vW6e0nls5WgnaonCuQ-zsKHrrrFBacRCM9x3j4D0flPTj2DkNUmpw1nkmNMWuFytyttO9XewGvcNpzhDNbQ4byFuTIJiXlSl8N-v002jBZK_uBE4eBHL6sWCZzSYUVw8AE6alGC6ZFoOox6vo8T_oTVpyXf-e6vigte4qxXeUy6mUjOPTMIyaO-vMzjpTrTP31tVZVuTd8zWeWh6NqoDYAaWWpjXmv3__R_YPMammZA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2416297776</pqid></control><display><type>article</type><title>Hydrogel-based milliwell arrays for standardized and scalable retinal organoid cultures</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Decembrini, S. ; Hoehnel, S. ; Brandenberg, N. ; Arsenijevic, Y. ; Lutolf, M. P.</creator><creatorcontrib>Decembrini, S. ; Hoehnel, S. ; Brandenberg, N. ; Arsenijevic, Y. ; Lutolf, M. P.</creatorcontrib><description>The development of improved methods to culture retinal organoids is relevant for the investigation of mechanisms of retinal development under pathophysiological conditions, for screening of neuroprotective compounds, and for providing a cellular source for clinical transplantation. We report a tissue-engineering approach to accelerate and standardize the production of retinal organoids by culturing mouse embryonic stem cells (mESC) in optimal physico-chemical microenvironments. Arrayed round-bottom milliwells composed of biomimetic hydrogels, combined with an optimized medium formulation, promoted the rapid generation of retina-like tissue from mESC aggregates in a highly efficient and stereotypical manner: ∼93% of the aggregates contained retinal organoid structures. 26 day-old retinal organoids were composed of ∼80% of photoreceptors, of which ∼22% are GNAT2-positive cones, an important and rare sensory cell type that is difficult to study in rodent models. The compartmentalization of retinal organoids into predefined locations on a two-dimensional array not only allowed us to derive almost all aggregates into retinal organoids, but also to reliably capture the dynamics of individual organoids, an advantageous requirement for high-throughput experimentation. Our improved retinal organoid culture system should be useful for applications that require scalability and single-organoid traceability.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-67012-7</identifier><identifier>PMID: 32581233</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13 ; 13/100 ; 13/107 ; 631/136/532/1360 ; 631/532/2117 ; 631/61/32 ; 639/166/985 ; 639/301/923/1027 ; 64 ; 82 ; 96 ; 96/100 ; 96/47 ; Aggregates ; Animal models ; Animals ; Biomimetic Materials - chemistry ; Biomimetics ; Cell culture ; Cell Culture Techniques - methods ; Cell Differentiation ; Cell Line ; Cones ; Embryo cells ; Heterotrimeric GTP-Binding Proteins - analysis ; Heterotrimeric GTP-Binding Proteins - metabolism ; Humanities and Social Sciences ; Hydrogels ; Hydrogels - chemistry ; Mice ; Microenvironments ; Microscopy, Electron ; Mouse Embryonic Stem Cells - physiology ; multidisciplinary ; Neuroprotection ; Organoids ; Organoids - physiology ; Organoids - ultrastructure ; Photoreceptors ; Retina ; Retinal Cone Photoreceptor Cells - physiology ; Retinal Cone Photoreceptor Cells - ultrastructure ; Science ; Science (multidisciplinary) ; Stem cell transplantation ; Stem cells ; Tissue engineering ; Tissue Engineering - methods</subject><ispartof>Scientific reports, 2020-06, Vol.10 (1), p.10275-10275, Article 10275</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c577t-4fb4a7be3cc6ee6bf38bcb35752a3128612add2954dff6c7a447acbcd1370e683</citedby><cites>FETCH-LOGICAL-c577t-4fb4a7be3cc6ee6bf38bcb35752a3128612add2954dff6c7a447acbcd1370e683</cites><orcidid>0000-0002-1609-1862 ; 0000-0002-5898-305X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2416297776/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2416297776?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32581233$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Decembrini, S.</creatorcontrib><creatorcontrib>Hoehnel, S.</creatorcontrib><creatorcontrib>Brandenberg, N.</creatorcontrib><creatorcontrib>Arsenijevic, Y.</creatorcontrib><creatorcontrib>Lutolf, M. P.</creatorcontrib><title>Hydrogel-based milliwell arrays for standardized and scalable retinal organoid cultures</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>The development of improved methods to culture retinal organoids is relevant for the investigation of mechanisms of retinal development under pathophysiological conditions, for screening of neuroprotective compounds, and for providing a cellular source for clinical transplantation. We report a tissue-engineering approach to accelerate and standardize the production of retinal organoids by culturing mouse embryonic stem cells (mESC) in optimal physico-chemical microenvironments. Arrayed round-bottom milliwells composed of biomimetic hydrogels, combined with an optimized medium formulation, promoted the rapid generation of retina-like tissue from mESC aggregates in a highly efficient and stereotypical manner: ∼93% of the aggregates contained retinal organoid structures. 26 day-old retinal organoids were composed of ∼80% of photoreceptors, of which ∼22% are GNAT2-positive cones, an important and rare sensory cell type that is difficult to study in rodent models. The compartmentalization of retinal organoids into predefined locations on a two-dimensional array not only allowed us to derive almost all aggregates into retinal organoids, but also to reliably capture the dynamics of individual organoids, an advantageous requirement for high-throughput experimentation. Our improved retinal organoid culture system should be useful for applications that require scalability and single-organoid traceability.</description><subject>13</subject><subject>13/100</subject><subject>13/107</subject><subject>631/136/532/1360</subject><subject>631/532/2117</subject><subject>631/61/32</subject><subject>639/166/985</subject><subject>639/301/923/1027</subject><subject>64</subject><subject>82</subject><subject>96</subject><subject>96/100</subject><subject>96/47</subject><subject>Aggregates</subject><subject>Animal models</subject><subject>Animals</subject><subject>Biomimetic Materials - chemistry</subject><subject>Biomimetics</subject><subject>Cell culture</subject><subject>Cell Culture Techniques - methods</subject><subject>Cell Differentiation</subject><subject>Cell Line</subject><subject>Cones</subject><subject>Embryo cells</subject><subject>Heterotrimeric GTP-Binding Proteins - analysis</subject><subject>Heterotrimeric GTP-Binding Proteins - metabolism</subject><subject>Humanities and Social Sciences</subject><subject>Hydrogels</subject><subject>Hydrogels - chemistry</subject><subject>Mice</subject><subject>Microenvironments</subject><subject>Microscopy, Electron</subject><subject>Mouse Embryonic Stem Cells - physiology</subject><subject>multidisciplinary</subject><subject>Neuroprotection</subject><subject>Organoids</subject><subject>Organoids - physiology</subject><subject>Organoids - ultrastructure</subject><subject>Photoreceptors</subject><subject>Retina</subject><subject>Retinal Cone Photoreceptor Cells - physiology</subject><subject>Retinal Cone Photoreceptor Cells - ultrastructure</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Stem cell transplantation</subject><subject>Stem cells</subject><subject>Tissue engineering</subject><subject>Tissue Engineering - methods</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9kc9PFTEQxxuDAfLkH_BgNuHCZbE_t7sXEkJUSEi8aDw203b2WdK3xXZX8_zrLTxA8OBcOsl85tuZ-RLyltFTRkX_vkimhr6lnLadpoy3-hU55FSqlgvO957lB-SolBtaQ_FBsmGfHAiuesaFOCTfLrc-pzXG1kJB32xCjOEXxthAzrAtzZhyU2aYPGQffleipk1xEMFGbDLOYYLYpLyGKQXfuCXOS8byhrweIRY8enhX5OvHD18uLtvrz5-uLs6vW6e0nls5WgnaonCuQ-zsKHrrrFBacRCM9x3j4D0flPTj2DkNUmpw1nkmNMWuFytyttO9XewGvcNpzhDNbQ4byFuTIJiXlSl8N-v002jBZK_uBE4eBHL6sWCZzSYUVw8AE6alGC6ZFoOox6vo8T_oTVpyXf-e6vigte4qxXeUy6mUjOPTMIyaO-vMzjpTrTP31tVZVuTd8zWeWh6NqoDYAaWWpjXmv3__R_YPMammZA</recordid><startdate>20200624</startdate><enddate>20200624</enddate><creator>Decembrini, S.</creator><creator>Hoehnel, S.</creator><creator>Brandenberg, N.</creator><creator>Arsenijevic, Y.</creator><creator>Lutolf, M. P.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1609-1862</orcidid><orcidid>https://orcid.org/0000-0002-5898-305X</orcidid></search><sort><creationdate>20200624</creationdate><title>Hydrogel-based milliwell arrays for standardized and scalable retinal organoid cultures</title><author>Decembrini, S. ; Hoehnel, S. ; Brandenberg, N. ; Arsenijevic, Y. ; Lutolf, M. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c577t-4fb4a7be3cc6ee6bf38bcb35752a3128612add2954dff6c7a447acbcd1370e683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>13</topic><topic>13/100</topic><topic>13/107</topic><topic>631/136/532/1360</topic><topic>631/532/2117</topic><topic>631/61/32</topic><topic>639/166/985</topic><topic>639/301/923/1027</topic><topic>64</topic><topic>82</topic><topic>96</topic><topic>96/100</topic><topic>96/47</topic><topic>Aggregates</topic><topic>Animal models</topic><topic>Animals</topic><topic>Biomimetic Materials - chemistry</topic><topic>Biomimetics</topic><topic>Cell culture</topic><topic>Cell Culture Techniques - methods</topic><topic>Cell Differentiation</topic><topic>Cell Line</topic><topic>Cones</topic><topic>Embryo cells</topic><topic>Heterotrimeric GTP-Binding Proteins - analysis</topic><topic>Heterotrimeric GTP-Binding Proteins - metabolism</topic><topic>Humanities and Social Sciences</topic><topic>Hydrogels</topic><topic>Hydrogels - chemistry</topic><topic>Mice</topic><topic>Microenvironments</topic><topic>Microscopy, Electron</topic><topic>Mouse Embryonic Stem Cells - physiology</topic><topic>multidisciplinary</topic><topic>Neuroprotection</topic><topic>Organoids</topic><topic>Organoids - physiology</topic><topic>Organoids - ultrastructure</topic><topic>Photoreceptors</topic><topic>Retina</topic><topic>Retinal Cone Photoreceptor Cells - physiology</topic><topic>Retinal Cone Photoreceptor Cells - ultrastructure</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Stem cell transplantation</topic><topic>Stem cells</topic><topic>Tissue engineering</topic><topic>Tissue Engineering - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Decembrini, S.</creatorcontrib><creatorcontrib>Hoehnel, S.</creatorcontrib><creatorcontrib>Brandenberg, N.</creatorcontrib><creatorcontrib>Arsenijevic, Y.</creatorcontrib><creatorcontrib>Lutolf, M. P.</creatorcontrib><collection>Springer Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Decembrini, S.</au><au>Hoehnel, S.</au><au>Brandenberg, N.</au><au>Arsenijevic, Y.</au><au>Lutolf, M. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrogel-based milliwell arrays for standardized and scalable retinal organoid cultures</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-06-24</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>10275</spage><epage>10275</epage><pages>10275-10275</pages><artnum>10275</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The development of improved methods to culture retinal organoids is relevant for the investigation of mechanisms of retinal development under pathophysiological conditions, for screening of neuroprotective compounds, and for providing a cellular source for clinical transplantation. We report a tissue-engineering approach to accelerate and standardize the production of retinal organoids by culturing mouse embryonic stem cells (mESC) in optimal physico-chemical microenvironments. Arrayed round-bottom milliwells composed of biomimetic hydrogels, combined with an optimized medium formulation, promoted the rapid generation of retina-like tissue from mESC aggregates in a highly efficient and stereotypical manner: ∼93% of the aggregates contained retinal organoid structures. 26 day-old retinal organoids were composed of ∼80% of photoreceptors, of which ∼22% are GNAT2-positive cones, an important and rare sensory cell type that is difficult to study in rodent models. The compartmentalization of retinal organoids into predefined locations on a two-dimensional array not only allowed us to derive almost all aggregates into retinal organoids, but also to reliably capture the dynamics of individual organoids, an advantageous requirement for high-throughput experimentation. Our improved retinal organoid culture system should be useful for applications that require scalability and single-organoid traceability.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32581233</pmid><doi>10.1038/s41598-020-67012-7</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-1609-1862</orcidid><orcidid>https://orcid.org/0000-0002-5898-305X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2020-06, Vol.10 (1), p.10275-10275, Article 10275 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7314858 |
source | Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 13 13/100 13/107 631/136/532/1360 631/532/2117 631/61/32 639/166/985 639/301/923/1027 64 82 96 96/100 96/47 Aggregates Animal models Animals Biomimetic Materials - chemistry Biomimetics Cell culture Cell Culture Techniques - methods Cell Differentiation Cell Line Cones Embryo cells Heterotrimeric GTP-Binding Proteins - analysis Heterotrimeric GTP-Binding Proteins - metabolism Humanities and Social Sciences Hydrogels Hydrogels - chemistry Mice Microenvironments Microscopy, Electron Mouse Embryonic Stem Cells - physiology multidisciplinary Neuroprotection Organoids Organoids - physiology Organoids - ultrastructure Photoreceptors Retina Retinal Cone Photoreceptor Cells - physiology Retinal Cone Photoreceptor Cells - ultrastructure Science Science (multidisciplinary) Stem cell transplantation Stem cells Tissue engineering Tissue Engineering - methods |
title | Hydrogel-based milliwell arrays for standardized and scalable retinal organoid cultures |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T14%3A38%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrogel-based%20milliwell%20arrays%20for%20standardized%20and%20scalable%20retinal%20organoid%20cultures&rft.jtitle=Scientific%20reports&rft.au=Decembrini,%20S.&rft.date=2020-06-24&rft.volume=10&rft.issue=1&rft.spage=10275&rft.epage=10275&rft.pages=10275-10275&rft.artnum=10275&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-67012-7&rft_dat=%3Cproquest_pubme%3E2417393005%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c577t-4fb4a7be3cc6ee6bf38bcb35752a3128612add2954dff6c7a447acbcd1370e683%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2416297776&rft_id=info:pmid/32581233&rfr_iscdi=true |