Loading…

Hydrogel-based milliwell arrays for standardized and scalable retinal organoid cultures

The development of improved methods to culture retinal organoids is relevant for the investigation of mechanisms of retinal development under pathophysiological conditions, for screening of neuroprotective compounds, and for providing a cellular source for clinical transplantation. We report a tissu...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2020-06, Vol.10 (1), p.10275-10275, Article 10275
Main Authors: Decembrini, S., Hoehnel, S., Brandenberg, N., Arsenijevic, Y., Lutolf, M. P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c577t-4fb4a7be3cc6ee6bf38bcb35752a3128612add2954dff6c7a447acbcd1370e683
cites cdi_FETCH-LOGICAL-c577t-4fb4a7be3cc6ee6bf38bcb35752a3128612add2954dff6c7a447acbcd1370e683
container_end_page 10275
container_issue 1
container_start_page 10275
container_title Scientific reports
container_volume 10
creator Decembrini, S.
Hoehnel, S.
Brandenberg, N.
Arsenijevic, Y.
Lutolf, M. P.
description The development of improved methods to culture retinal organoids is relevant for the investigation of mechanisms of retinal development under pathophysiological conditions, for screening of neuroprotective compounds, and for providing a cellular source for clinical transplantation. We report a tissue-engineering approach to accelerate and standardize the production of retinal organoids by culturing mouse embryonic stem cells (mESC) in optimal physico-chemical microenvironments. Arrayed round-bottom milliwells composed of biomimetic hydrogels, combined with an optimized medium formulation, promoted the rapid generation of retina-like tissue from mESC aggregates in a highly efficient and stereotypical manner: ∼93% of the aggregates contained retinal organoid structures. 26 day-old retinal organoids were composed of ∼80% of photoreceptors, of which ∼22% are GNAT2-positive cones, an important and rare sensory cell type that is difficult to study in rodent models. The compartmentalization of retinal organoids into predefined locations on a two-dimensional array not only allowed us to derive almost all aggregates into retinal organoids, but also to reliably capture the dynamics of individual organoids, an advantageous requirement for high-throughput experimentation. Our improved retinal organoid culture system should be useful for applications that require scalability and single-organoid traceability.
doi_str_mv 10.1038/s41598-020-67012-7
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7314858</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2417393005</sourcerecordid><originalsourceid>FETCH-LOGICAL-c577t-4fb4a7be3cc6ee6bf38bcb35752a3128612add2954dff6c7a447acbcd1370e683</originalsourceid><addsrcrecordid>eNp9kc9PFTEQxxuDAfLkH_BgNuHCZbE_t7sXEkJUSEi8aDw203b2WdK3xXZX8_zrLTxA8OBcOsl85tuZ-RLyltFTRkX_vkimhr6lnLadpoy3-hU55FSqlgvO957lB-SolBtaQ_FBsmGfHAiuesaFOCTfLrc-pzXG1kJB32xCjOEXxthAzrAtzZhyU2aYPGQffleipk1xEMFGbDLOYYLYpLyGKQXfuCXOS8byhrweIRY8enhX5OvHD18uLtvrz5-uLs6vW6e0nls5WgnaonCuQ-zsKHrrrFBacRCM9x3j4D0flPTj2DkNUmpw1nkmNMWuFytyttO9XewGvcNpzhDNbQ4byFuTIJiXlSl8N-v002jBZK_uBE4eBHL6sWCZzSYUVw8AE6alGC6ZFoOox6vo8T_oTVpyXf-e6vigte4qxXeUy6mUjOPTMIyaO-vMzjpTrTP31tVZVuTd8zWeWh6NqoDYAaWWpjXmv3__R_YPMammZA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2416297776</pqid></control><display><type>article</type><title>Hydrogel-based milliwell arrays for standardized and scalable retinal organoid cultures</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Decembrini, S. ; Hoehnel, S. ; Brandenberg, N. ; Arsenijevic, Y. ; Lutolf, M. P.</creator><creatorcontrib>Decembrini, S. ; Hoehnel, S. ; Brandenberg, N. ; Arsenijevic, Y. ; Lutolf, M. P.</creatorcontrib><description>The development of improved methods to culture retinal organoids is relevant for the investigation of mechanisms of retinal development under pathophysiological conditions, for screening of neuroprotective compounds, and for providing a cellular source for clinical transplantation. We report a tissue-engineering approach to accelerate and standardize the production of retinal organoids by culturing mouse embryonic stem cells (mESC) in optimal physico-chemical microenvironments. Arrayed round-bottom milliwells composed of biomimetic hydrogels, combined with an optimized medium formulation, promoted the rapid generation of retina-like tissue from mESC aggregates in a highly efficient and stereotypical manner: ∼93% of the aggregates contained retinal organoid structures. 26 day-old retinal organoids were composed of ∼80% of photoreceptors, of which ∼22% are GNAT2-positive cones, an important and rare sensory cell type that is difficult to study in rodent models. The compartmentalization of retinal organoids into predefined locations on a two-dimensional array not only allowed us to derive almost all aggregates into retinal organoids, but also to reliably capture the dynamics of individual organoids, an advantageous requirement for high-throughput experimentation. Our improved retinal organoid culture system should be useful for applications that require scalability and single-organoid traceability.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-67012-7</identifier><identifier>PMID: 32581233</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13 ; 13/100 ; 13/107 ; 631/136/532/1360 ; 631/532/2117 ; 631/61/32 ; 639/166/985 ; 639/301/923/1027 ; 64 ; 82 ; 96 ; 96/100 ; 96/47 ; Aggregates ; Animal models ; Animals ; Biomimetic Materials - chemistry ; Biomimetics ; Cell culture ; Cell Culture Techniques - methods ; Cell Differentiation ; Cell Line ; Cones ; Embryo cells ; Heterotrimeric GTP-Binding Proteins - analysis ; Heterotrimeric GTP-Binding Proteins - metabolism ; Humanities and Social Sciences ; Hydrogels ; Hydrogels - chemistry ; Mice ; Microenvironments ; Microscopy, Electron ; Mouse Embryonic Stem Cells - physiology ; multidisciplinary ; Neuroprotection ; Organoids ; Organoids - physiology ; Organoids - ultrastructure ; Photoreceptors ; Retina ; Retinal Cone Photoreceptor Cells - physiology ; Retinal Cone Photoreceptor Cells - ultrastructure ; Science ; Science (multidisciplinary) ; Stem cell transplantation ; Stem cells ; Tissue engineering ; Tissue Engineering - methods</subject><ispartof>Scientific reports, 2020-06, Vol.10 (1), p.10275-10275, Article 10275</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c577t-4fb4a7be3cc6ee6bf38bcb35752a3128612add2954dff6c7a447acbcd1370e683</citedby><cites>FETCH-LOGICAL-c577t-4fb4a7be3cc6ee6bf38bcb35752a3128612add2954dff6c7a447acbcd1370e683</cites><orcidid>0000-0002-1609-1862 ; 0000-0002-5898-305X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2416297776/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2416297776?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32581233$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Decembrini, S.</creatorcontrib><creatorcontrib>Hoehnel, S.</creatorcontrib><creatorcontrib>Brandenberg, N.</creatorcontrib><creatorcontrib>Arsenijevic, Y.</creatorcontrib><creatorcontrib>Lutolf, M. P.</creatorcontrib><title>Hydrogel-based milliwell arrays for standardized and scalable retinal organoid cultures</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>The development of improved methods to culture retinal organoids is relevant for the investigation of mechanisms of retinal development under pathophysiological conditions, for screening of neuroprotective compounds, and for providing a cellular source for clinical transplantation. We report a tissue-engineering approach to accelerate and standardize the production of retinal organoids by culturing mouse embryonic stem cells (mESC) in optimal physico-chemical microenvironments. Arrayed round-bottom milliwells composed of biomimetic hydrogels, combined with an optimized medium formulation, promoted the rapid generation of retina-like tissue from mESC aggregates in a highly efficient and stereotypical manner: ∼93% of the aggregates contained retinal organoid structures. 26 day-old retinal organoids were composed of ∼80% of photoreceptors, of which ∼22% are GNAT2-positive cones, an important and rare sensory cell type that is difficult to study in rodent models. The compartmentalization of retinal organoids into predefined locations on a two-dimensional array not only allowed us to derive almost all aggregates into retinal organoids, but also to reliably capture the dynamics of individual organoids, an advantageous requirement for high-throughput experimentation. Our improved retinal organoid culture system should be useful for applications that require scalability and single-organoid traceability.</description><subject>13</subject><subject>13/100</subject><subject>13/107</subject><subject>631/136/532/1360</subject><subject>631/532/2117</subject><subject>631/61/32</subject><subject>639/166/985</subject><subject>639/301/923/1027</subject><subject>64</subject><subject>82</subject><subject>96</subject><subject>96/100</subject><subject>96/47</subject><subject>Aggregates</subject><subject>Animal models</subject><subject>Animals</subject><subject>Biomimetic Materials - chemistry</subject><subject>Biomimetics</subject><subject>Cell culture</subject><subject>Cell Culture Techniques - methods</subject><subject>Cell Differentiation</subject><subject>Cell Line</subject><subject>Cones</subject><subject>Embryo cells</subject><subject>Heterotrimeric GTP-Binding Proteins - analysis</subject><subject>Heterotrimeric GTP-Binding Proteins - metabolism</subject><subject>Humanities and Social Sciences</subject><subject>Hydrogels</subject><subject>Hydrogels - chemistry</subject><subject>Mice</subject><subject>Microenvironments</subject><subject>Microscopy, Electron</subject><subject>Mouse Embryonic Stem Cells - physiology</subject><subject>multidisciplinary</subject><subject>Neuroprotection</subject><subject>Organoids</subject><subject>Organoids - physiology</subject><subject>Organoids - ultrastructure</subject><subject>Photoreceptors</subject><subject>Retina</subject><subject>Retinal Cone Photoreceptor Cells - physiology</subject><subject>Retinal Cone Photoreceptor Cells - ultrastructure</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Stem cell transplantation</subject><subject>Stem cells</subject><subject>Tissue engineering</subject><subject>Tissue Engineering - methods</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9kc9PFTEQxxuDAfLkH_BgNuHCZbE_t7sXEkJUSEi8aDw203b2WdK3xXZX8_zrLTxA8OBcOsl85tuZ-RLyltFTRkX_vkimhr6lnLadpoy3-hU55FSqlgvO957lB-SolBtaQ_FBsmGfHAiuesaFOCTfLrc-pzXG1kJB32xCjOEXxthAzrAtzZhyU2aYPGQffleipk1xEMFGbDLOYYLYpLyGKQXfuCXOS8byhrweIRY8enhX5OvHD18uLtvrz5-uLs6vW6e0nls5WgnaonCuQ-zsKHrrrFBacRCM9x3j4D0flPTj2DkNUmpw1nkmNMWuFytyttO9XewGvcNpzhDNbQ4byFuTIJiXlSl8N-v002jBZK_uBE4eBHL6sWCZzSYUVw8AE6alGC6ZFoOox6vo8T_oTVpyXf-e6vigte4qxXeUy6mUjOPTMIyaO-vMzjpTrTP31tVZVuTd8zWeWh6NqoDYAaWWpjXmv3__R_YPMammZA</recordid><startdate>20200624</startdate><enddate>20200624</enddate><creator>Decembrini, S.</creator><creator>Hoehnel, S.</creator><creator>Brandenberg, N.</creator><creator>Arsenijevic, Y.</creator><creator>Lutolf, M. P.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1609-1862</orcidid><orcidid>https://orcid.org/0000-0002-5898-305X</orcidid></search><sort><creationdate>20200624</creationdate><title>Hydrogel-based milliwell arrays for standardized and scalable retinal organoid cultures</title><author>Decembrini, S. ; Hoehnel, S. ; Brandenberg, N. ; Arsenijevic, Y. ; Lutolf, M. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c577t-4fb4a7be3cc6ee6bf38bcb35752a3128612add2954dff6c7a447acbcd1370e683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>13</topic><topic>13/100</topic><topic>13/107</topic><topic>631/136/532/1360</topic><topic>631/532/2117</topic><topic>631/61/32</topic><topic>639/166/985</topic><topic>639/301/923/1027</topic><topic>64</topic><topic>82</topic><topic>96</topic><topic>96/100</topic><topic>96/47</topic><topic>Aggregates</topic><topic>Animal models</topic><topic>Animals</topic><topic>Biomimetic Materials - chemistry</topic><topic>Biomimetics</topic><topic>Cell culture</topic><topic>Cell Culture Techniques - methods</topic><topic>Cell Differentiation</topic><topic>Cell Line</topic><topic>Cones</topic><topic>Embryo cells</topic><topic>Heterotrimeric GTP-Binding Proteins - analysis</topic><topic>Heterotrimeric GTP-Binding Proteins - metabolism</topic><topic>Humanities and Social Sciences</topic><topic>Hydrogels</topic><topic>Hydrogels - chemistry</topic><topic>Mice</topic><topic>Microenvironments</topic><topic>Microscopy, Electron</topic><topic>Mouse Embryonic Stem Cells - physiology</topic><topic>multidisciplinary</topic><topic>Neuroprotection</topic><topic>Organoids</topic><topic>Organoids - physiology</topic><topic>Organoids - ultrastructure</topic><topic>Photoreceptors</topic><topic>Retina</topic><topic>Retinal Cone Photoreceptor Cells - physiology</topic><topic>Retinal Cone Photoreceptor Cells - ultrastructure</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Stem cell transplantation</topic><topic>Stem cells</topic><topic>Tissue engineering</topic><topic>Tissue Engineering - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Decembrini, S.</creatorcontrib><creatorcontrib>Hoehnel, S.</creatorcontrib><creatorcontrib>Brandenberg, N.</creatorcontrib><creatorcontrib>Arsenijevic, Y.</creatorcontrib><creatorcontrib>Lutolf, M. P.</creatorcontrib><collection>Springer Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Decembrini, S.</au><au>Hoehnel, S.</au><au>Brandenberg, N.</au><au>Arsenijevic, Y.</au><au>Lutolf, M. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrogel-based milliwell arrays for standardized and scalable retinal organoid cultures</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-06-24</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>10275</spage><epage>10275</epage><pages>10275-10275</pages><artnum>10275</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The development of improved methods to culture retinal organoids is relevant for the investigation of mechanisms of retinal development under pathophysiological conditions, for screening of neuroprotective compounds, and for providing a cellular source for clinical transplantation. We report a tissue-engineering approach to accelerate and standardize the production of retinal organoids by culturing mouse embryonic stem cells (mESC) in optimal physico-chemical microenvironments. Arrayed round-bottom milliwells composed of biomimetic hydrogels, combined with an optimized medium formulation, promoted the rapid generation of retina-like tissue from mESC aggregates in a highly efficient and stereotypical manner: ∼93% of the aggregates contained retinal organoid structures. 26 day-old retinal organoids were composed of ∼80% of photoreceptors, of which ∼22% are GNAT2-positive cones, an important and rare sensory cell type that is difficult to study in rodent models. The compartmentalization of retinal organoids into predefined locations on a two-dimensional array not only allowed us to derive almost all aggregates into retinal organoids, but also to reliably capture the dynamics of individual organoids, an advantageous requirement for high-throughput experimentation. Our improved retinal organoid culture system should be useful for applications that require scalability and single-organoid traceability.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32581233</pmid><doi>10.1038/s41598-020-67012-7</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-1609-1862</orcidid><orcidid>https://orcid.org/0000-0002-5898-305X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2020-06, Vol.10 (1), p.10275-10275, Article 10275
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7314858
source Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access
subjects 13
13/100
13/107
631/136/532/1360
631/532/2117
631/61/32
639/166/985
639/301/923/1027
64
82
96
96/100
96/47
Aggregates
Animal models
Animals
Biomimetic Materials - chemistry
Biomimetics
Cell culture
Cell Culture Techniques - methods
Cell Differentiation
Cell Line
Cones
Embryo cells
Heterotrimeric GTP-Binding Proteins - analysis
Heterotrimeric GTP-Binding Proteins - metabolism
Humanities and Social Sciences
Hydrogels
Hydrogels - chemistry
Mice
Microenvironments
Microscopy, Electron
Mouse Embryonic Stem Cells - physiology
multidisciplinary
Neuroprotection
Organoids
Organoids - physiology
Organoids - ultrastructure
Photoreceptors
Retina
Retinal Cone Photoreceptor Cells - physiology
Retinal Cone Photoreceptor Cells - ultrastructure
Science
Science (multidisciplinary)
Stem cell transplantation
Stem cells
Tissue engineering
Tissue Engineering - methods
title Hydrogel-based milliwell arrays for standardized and scalable retinal organoid cultures
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T14%3A38%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrogel-based%20milliwell%20arrays%20for%20standardized%20and%20scalable%20retinal%20organoid%20cultures&rft.jtitle=Scientific%20reports&rft.au=Decembrini,%20S.&rft.date=2020-06-24&rft.volume=10&rft.issue=1&rft.spage=10275&rft.epage=10275&rft.pages=10275-10275&rft.artnum=10275&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-67012-7&rft_dat=%3Cproquest_pubme%3E2417393005%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c577t-4fb4a7be3cc6ee6bf38bcb35752a3128612add2954dff6c7a447acbcd1370e683%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2416297776&rft_id=info:pmid/32581233&rfr_iscdi=true