Loading…
ALS-associated genes in SCA2 mouse spinal cord transcriptomes
Abstract The spinocerebellar ataxia type 2 (SCA2) gene ATXN2 has a prominent role in the pathogenesis and treatment of amyotrophic lateral sclerosis (ALS). In addition to cerebellar ataxia, motor neuron disease is often seen in SCA2, and ATXN2 CAG repeat expansions in the long normal range increase...
Saved in:
Published in: | Human molecular genetics 2020-06, Vol.29 (10), p.1658-1672 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c412t-d7c84f6d0908c9ed23176975de931ec4be263f9dfbc623ab919dd8ac3247ee403 |
---|---|
cites | cdi_FETCH-LOGICAL-c412t-d7c84f6d0908c9ed23176975de931ec4be263f9dfbc623ab919dd8ac3247ee403 |
container_end_page | 1672 |
container_issue | 10 |
container_start_page | 1658 |
container_title | Human molecular genetics |
container_volume | 29 |
creator | Scoles, Daniel R Dansithong, Warunee Pflieger, Lance T Paul, Sharan Gandelman, Mandi Figueroa, Karla P Rigo, Frank Bennett, C Frank Pulst, Stefan M |
description | Abstract
The spinocerebellar ataxia type 2 (SCA2) gene ATXN2 has a prominent role in the pathogenesis and treatment of amyotrophic lateral sclerosis (ALS). In addition to cerebellar ataxia, motor neuron disease is often seen in SCA2, and ATXN2 CAG repeat expansions in the long normal range increase ALS risk. Also, lowering ATXN2 expression in TDP-43 ALS mice prolongs their survival. Here we investigated the ATXN2 relationship with motor neuron dysfunction in vivo by comparing spinal cord (SC) transcriptomes reported from TDP-43 and SOD1 ALS mice and ALS patients with those from SCA2 mice. SC transcriptomes were determined using an SCA2 bacterial artificial chromosome mouse model expressing polyglutamine expanded ATXN2. SCA2 cerebellar transcriptomes were also determined, and we also investigated the modification of gene expression following treatment of SCA2 mice with an antisense oligonucleotide (ASO) lowering ATXN2 expression. Differentially expressed genes (DEGs) defined three interconnected pathways (innate immunity, fatty acid biosynthesis and cholesterol biosynthesis) in separate modules identified by weighted gene co-expression network analysis. Other key pathways included the complement system and lysosome/phagosome pathways. Of all DEGs in SC, 12.6% were also dysregulated in the cerebellum. Treatment of mice with an ATXN2 ASO also modified innate immunity, the complement system and lysosome/phagosome pathways. This study provides new insights into the underlying molecular basis of SCA2 SC phenotypes and demonstrates annotated pathways shared with TDP-43 and SOD1 ALS mice and ALS patients. It also emphasizes the importance of ATXN2 in motor neuron degeneration and confirms ATXN2 as a therapeutic target. |
doi_str_mv | 10.1093/hmg/ddaa072 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7322574</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/hmg/ddaa072</oup_id><sourcerecordid>2392458218</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-d7c84f6d0908c9ed23176975de931ec4be263f9dfbc623ab919dd8ac3247ee403</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRbK2evEtOIkjsfnU3e1AoxS8oeKiel83upF1JsjGbCP57I62iF09zmIdn3nkROiX4imDFpptqPXXOGCzpHhoTLnBKccb20RgrwVOhsBihoxhfMSaCM3mIRowyLGeUj9H1fLlKTYzBetOBS9ZQQ0x8nawWc5pUoY-QxMbXpkxsaF3StaaOtvVNFyqIx-igMGWEk92coJe72-fFQ7p8un9czJep5YR2qZM244VwWOHMKnCUESmUnDlQjIDlOVDBCuWK3ArKTK6Ici4zllEuAThmE3Sz9TZ9XoGzUA85St20vjLthw7G67-b2m_0OrxrySidST4ILnaCNrz1EDtd-WihLE0Nw4-aMkX5LKMkG9DLLWrbEGMLxc8ZgvVX4XooXO8KH-iz38l-2O-GB-B8C4S--df0CXmiinQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2392458218</pqid></control><display><type>article</type><title>ALS-associated genes in SCA2 mouse spinal cord transcriptomes</title><source>Oxford Journals Online</source><creator>Scoles, Daniel R ; Dansithong, Warunee ; Pflieger, Lance T ; Paul, Sharan ; Gandelman, Mandi ; Figueroa, Karla P ; Rigo, Frank ; Bennett, C Frank ; Pulst, Stefan M</creator><creatorcontrib>Scoles, Daniel R ; Dansithong, Warunee ; Pflieger, Lance T ; Paul, Sharan ; Gandelman, Mandi ; Figueroa, Karla P ; Rigo, Frank ; Bennett, C Frank ; Pulst, Stefan M</creatorcontrib><description>Abstract
The spinocerebellar ataxia type 2 (SCA2) gene ATXN2 has a prominent role in the pathogenesis and treatment of amyotrophic lateral sclerosis (ALS). In addition to cerebellar ataxia, motor neuron disease is often seen in SCA2, and ATXN2 CAG repeat expansions in the long normal range increase ALS risk. Also, lowering ATXN2 expression in TDP-43 ALS mice prolongs their survival. Here we investigated the ATXN2 relationship with motor neuron dysfunction in vivo by comparing spinal cord (SC) transcriptomes reported from TDP-43 and SOD1 ALS mice and ALS patients with those from SCA2 mice. SC transcriptomes were determined using an SCA2 bacterial artificial chromosome mouse model expressing polyglutamine expanded ATXN2. SCA2 cerebellar transcriptomes were also determined, and we also investigated the modification of gene expression following treatment of SCA2 mice with an antisense oligonucleotide (ASO) lowering ATXN2 expression. Differentially expressed genes (DEGs) defined three interconnected pathways (innate immunity, fatty acid biosynthesis and cholesterol biosynthesis) in separate modules identified by weighted gene co-expression network analysis. Other key pathways included the complement system and lysosome/phagosome pathways. Of all DEGs in SC, 12.6% were also dysregulated in the cerebellum. Treatment of mice with an ATXN2 ASO also modified innate immunity, the complement system and lysosome/phagosome pathways. This study provides new insights into the underlying molecular basis of SCA2 SC phenotypes and demonstrates annotated pathways shared with TDP-43 and SOD1 ALS mice and ALS patients. It also emphasizes the importance of ATXN2 in motor neuron degeneration and confirms ATXN2 as a therapeutic target.</description><identifier>ISSN: 0964-6906</identifier><identifier>EISSN: 1460-2083</identifier><identifier>DOI: 10.1093/hmg/ddaa072</identifier><identifier>PMID: 32307524</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><ispartof>Human molecular genetics, 2020-06, Vol.29 (10), p.1658-1672</ispartof><rights>The Author(s) 2020. Published by Oxford University Press. 2020</rights><rights>The Author(s) 2020. Published by Oxford University Press.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-d7c84f6d0908c9ed23176975de931ec4be263f9dfbc623ab919dd8ac3247ee403</citedby><cites>FETCH-LOGICAL-c412t-d7c84f6d0908c9ed23176975de931ec4be263f9dfbc623ab919dd8ac3247ee403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32307524$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Scoles, Daniel R</creatorcontrib><creatorcontrib>Dansithong, Warunee</creatorcontrib><creatorcontrib>Pflieger, Lance T</creatorcontrib><creatorcontrib>Paul, Sharan</creatorcontrib><creatorcontrib>Gandelman, Mandi</creatorcontrib><creatorcontrib>Figueroa, Karla P</creatorcontrib><creatorcontrib>Rigo, Frank</creatorcontrib><creatorcontrib>Bennett, C Frank</creatorcontrib><creatorcontrib>Pulst, Stefan M</creatorcontrib><title>ALS-associated genes in SCA2 mouse spinal cord transcriptomes</title><title>Human molecular genetics</title><addtitle>Hum Mol Genet</addtitle><description>Abstract
The spinocerebellar ataxia type 2 (SCA2) gene ATXN2 has a prominent role in the pathogenesis and treatment of amyotrophic lateral sclerosis (ALS). In addition to cerebellar ataxia, motor neuron disease is often seen in SCA2, and ATXN2 CAG repeat expansions in the long normal range increase ALS risk. Also, lowering ATXN2 expression in TDP-43 ALS mice prolongs their survival. Here we investigated the ATXN2 relationship with motor neuron dysfunction in vivo by comparing spinal cord (SC) transcriptomes reported from TDP-43 and SOD1 ALS mice and ALS patients with those from SCA2 mice. SC transcriptomes were determined using an SCA2 bacterial artificial chromosome mouse model expressing polyglutamine expanded ATXN2. SCA2 cerebellar transcriptomes were also determined, and we also investigated the modification of gene expression following treatment of SCA2 mice with an antisense oligonucleotide (ASO) lowering ATXN2 expression. Differentially expressed genes (DEGs) defined three interconnected pathways (innate immunity, fatty acid biosynthesis and cholesterol biosynthesis) in separate modules identified by weighted gene co-expression network analysis. Other key pathways included the complement system and lysosome/phagosome pathways. Of all DEGs in SC, 12.6% were also dysregulated in the cerebellum. Treatment of mice with an ATXN2 ASO also modified innate immunity, the complement system and lysosome/phagosome pathways. This study provides new insights into the underlying molecular basis of SCA2 SC phenotypes and demonstrates annotated pathways shared with TDP-43 and SOD1 ALS mice and ALS patients. It also emphasizes the importance of ATXN2 in motor neuron degeneration and confirms ATXN2 as a therapeutic target.</description><issn>0964-6906</issn><issn>1460-2083</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNp9kE1Lw0AQhhdRbK2evEtOIkjsfnU3e1AoxS8oeKiel83upF1JsjGbCP57I62iF09zmIdn3nkROiX4imDFpptqPXXOGCzpHhoTLnBKccb20RgrwVOhsBihoxhfMSaCM3mIRowyLGeUj9H1fLlKTYzBetOBS9ZQQ0x8nawWc5pUoY-QxMbXpkxsaF3StaaOtvVNFyqIx-igMGWEk92coJe72-fFQ7p8un9czJep5YR2qZM244VwWOHMKnCUESmUnDlQjIDlOVDBCuWK3ArKTK6Ici4zllEuAThmE3Sz9TZ9XoGzUA85St20vjLthw7G67-b2m_0OrxrySidST4ILnaCNrz1EDtd-WihLE0Nw4-aMkX5LKMkG9DLLWrbEGMLxc8ZgvVX4XooXO8KH-iz38l-2O-GB-B8C4S--df0CXmiinQ</recordid><startdate>20200627</startdate><enddate>20200627</enddate><creator>Scoles, Daniel R</creator><creator>Dansithong, Warunee</creator><creator>Pflieger, Lance T</creator><creator>Paul, Sharan</creator><creator>Gandelman, Mandi</creator><creator>Figueroa, Karla P</creator><creator>Rigo, Frank</creator><creator>Bennett, C Frank</creator><creator>Pulst, Stefan M</creator><general>Oxford University Press</general><scope>TOX</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200627</creationdate><title>ALS-associated genes in SCA2 mouse spinal cord transcriptomes</title><author>Scoles, Daniel R ; Dansithong, Warunee ; Pflieger, Lance T ; Paul, Sharan ; Gandelman, Mandi ; Figueroa, Karla P ; Rigo, Frank ; Bennett, C Frank ; Pulst, Stefan M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-d7c84f6d0908c9ed23176975de931ec4be263f9dfbc623ab919dd8ac3247ee403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scoles, Daniel R</creatorcontrib><creatorcontrib>Dansithong, Warunee</creatorcontrib><creatorcontrib>Pflieger, Lance T</creatorcontrib><creatorcontrib>Paul, Sharan</creatorcontrib><creatorcontrib>Gandelman, Mandi</creatorcontrib><creatorcontrib>Figueroa, Karla P</creatorcontrib><creatorcontrib>Rigo, Frank</creatorcontrib><creatorcontrib>Bennett, C Frank</creatorcontrib><creatorcontrib>Pulst, Stefan M</creatorcontrib><collection>Oxford Open</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Human molecular genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scoles, Daniel R</au><au>Dansithong, Warunee</au><au>Pflieger, Lance T</au><au>Paul, Sharan</au><au>Gandelman, Mandi</au><au>Figueroa, Karla P</au><au>Rigo, Frank</au><au>Bennett, C Frank</au><au>Pulst, Stefan M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ALS-associated genes in SCA2 mouse spinal cord transcriptomes</atitle><jtitle>Human molecular genetics</jtitle><addtitle>Hum Mol Genet</addtitle><date>2020-06-27</date><risdate>2020</risdate><volume>29</volume><issue>10</issue><spage>1658</spage><epage>1672</epage><pages>1658-1672</pages><issn>0964-6906</issn><eissn>1460-2083</eissn><abstract>Abstract
The spinocerebellar ataxia type 2 (SCA2) gene ATXN2 has a prominent role in the pathogenesis and treatment of amyotrophic lateral sclerosis (ALS). In addition to cerebellar ataxia, motor neuron disease is often seen in SCA2, and ATXN2 CAG repeat expansions in the long normal range increase ALS risk. Also, lowering ATXN2 expression in TDP-43 ALS mice prolongs their survival. Here we investigated the ATXN2 relationship with motor neuron dysfunction in vivo by comparing spinal cord (SC) transcriptomes reported from TDP-43 and SOD1 ALS mice and ALS patients with those from SCA2 mice. SC transcriptomes were determined using an SCA2 bacterial artificial chromosome mouse model expressing polyglutamine expanded ATXN2. SCA2 cerebellar transcriptomes were also determined, and we also investigated the modification of gene expression following treatment of SCA2 mice with an antisense oligonucleotide (ASO) lowering ATXN2 expression. Differentially expressed genes (DEGs) defined three interconnected pathways (innate immunity, fatty acid biosynthesis and cholesterol biosynthesis) in separate modules identified by weighted gene co-expression network analysis. Other key pathways included the complement system and lysosome/phagosome pathways. Of all DEGs in SC, 12.6% were also dysregulated in the cerebellum. Treatment of mice with an ATXN2 ASO also modified innate immunity, the complement system and lysosome/phagosome pathways. This study provides new insights into the underlying molecular basis of SCA2 SC phenotypes and demonstrates annotated pathways shared with TDP-43 and SOD1 ALS mice and ALS patients. It also emphasizes the importance of ATXN2 in motor neuron degeneration and confirms ATXN2 as a therapeutic target.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>32307524</pmid><doi>10.1093/hmg/ddaa072</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0964-6906 |
ispartof | Human molecular genetics, 2020-06, Vol.29 (10), p.1658-1672 |
issn | 0964-6906 1460-2083 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7322574 |
source | Oxford Journals Online |
title | ALS-associated genes in SCA2 mouse spinal cord transcriptomes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T20%3A40%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ALS-associated%20genes%20in%20SCA2%20mouse%20spinal%20cord%20transcriptomes&rft.jtitle=Human%20molecular%20genetics&rft.au=Scoles,%20Daniel%20R&rft.date=2020-06-27&rft.volume=29&rft.issue=10&rft.spage=1658&rft.epage=1672&rft.pages=1658-1672&rft.issn=0964-6906&rft.eissn=1460-2083&rft_id=info:doi/10.1093/hmg/ddaa072&rft_dat=%3Cproquest_pubme%3E2392458218%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c412t-d7c84f6d0908c9ed23176975de931ec4be263f9dfbc623ab919dd8ac3247ee403%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2392458218&rft_id=info:pmid/32307524&rft_oup_id=10.1093/hmg/ddaa072&rfr_iscdi=true |