Loading…

ALS-associated genes in SCA2 mouse spinal cord transcriptomes

Abstract The spinocerebellar ataxia type 2 (SCA2) gene ATXN2 has a prominent role in the pathogenesis and treatment of amyotrophic lateral sclerosis (ALS). In addition to cerebellar ataxia, motor neuron disease is often seen in SCA2, and ATXN2 CAG repeat expansions in the long normal range increase...

Full description

Saved in:
Bibliographic Details
Published in:Human molecular genetics 2020-06, Vol.29 (10), p.1658-1672
Main Authors: Scoles, Daniel R, Dansithong, Warunee, Pflieger, Lance T, Paul, Sharan, Gandelman, Mandi, Figueroa, Karla P, Rigo, Frank, Bennett, C Frank, Pulst, Stefan M
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c412t-d7c84f6d0908c9ed23176975de931ec4be263f9dfbc623ab919dd8ac3247ee403
cites cdi_FETCH-LOGICAL-c412t-d7c84f6d0908c9ed23176975de931ec4be263f9dfbc623ab919dd8ac3247ee403
container_end_page 1672
container_issue 10
container_start_page 1658
container_title Human molecular genetics
container_volume 29
creator Scoles, Daniel R
Dansithong, Warunee
Pflieger, Lance T
Paul, Sharan
Gandelman, Mandi
Figueroa, Karla P
Rigo, Frank
Bennett, C Frank
Pulst, Stefan M
description Abstract The spinocerebellar ataxia type 2 (SCA2) gene ATXN2 has a prominent role in the pathogenesis and treatment of amyotrophic lateral sclerosis (ALS). In addition to cerebellar ataxia, motor neuron disease is often seen in SCA2, and ATXN2 CAG repeat expansions in the long normal range increase ALS risk. Also, lowering ATXN2 expression in TDP-43 ALS mice prolongs their survival. Here we investigated the ATXN2 relationship with motor neuron dysfunction in vivo by comparing spinal cord (SC) transcriptomes reported from TDP-43 and SOD1 ALS mice and ALS patients with those from SCA2 mice. SC transcriptomes were determined using an SCA2 bacterial artificial chromosome mouse model expressing polyglutamine expanded ATXN2. SCA2 cerebellar transcriptomes were also determined, and we also investigated the modification of gene expression following treatment of SCA2 mice with an antisense oligonucleotide (ASO) lowering ATXN2 expression. Differentially expressed genes (DEGs) defined three interconnected pathways (innate immunity, fatty acid biosynthesis and cholesterol biosynthesis) in separate modules identified by weighted gene co-expression network analysis. Other key pathways included the complement system and lysosome/phagosome pathways. Of all DEGs in SC, 12.6% were also dysregulated in the cerebellum. Treatment of mice with an ATXN2 ASO also modified innate immunity, the complement system and lysosome/phagosome pathways. This study provides new insights into the underlying molecular basis of SCA2 SC phenotypes and demonstrates annotated pathways shared with TDP-43 and SOD1 ALS mice and ALS patients. It also emphasizes the importance of ATXN2 in motor neuron degeneration and confirms ATXN2 as a therapeutic target.
doi_str_mv 10.1093/hmg/ddaa072
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7322574</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/hmg/ddaa072</oup_id><sourcerecordid>2392458218</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-d7c84f6d0908c9ed23176975de931ec4be263f9dfbc623ab919dd8ac3247ee403</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRbK2evEtOIkjsfnU3e1AoxS8oeKiel83upF1JsjGbCP57I62iF09zmIdn3nkROiX4imDFpptqPXXOGCzpHhoTLnBKccb20RgrwVOhsBihoxhfMSaCM3mIRowyLGeUj9H1fLlKTYzBetOBS9ZQQ0x8nawWc5pUoY-QxMbXpkxsaF3StaaOtvVNFyqIx-igMGWEk92coJe72-fFQ7p8un9czJep5YR2qZM244VwWOHMKnCUESmUnDlQjIDlOVDBCuWK3ArKTK6Ici4zllEuAThmE3Sz9TZ9XoGzUA85St20vjLthw7G67-b2m_0OrxrySidST4ILnaCNrz1EDtd-WihLE0Nw4-aMkX5LKMkG9DLLWrbEGMLxc8ZgvVX4XooXO8KH-iz38l-2O-GB-B8C4S--df0CXmiinQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2392458218</pqid></control><display><type>article</type><title>ALS-associated genes in SCA2 mouse spinal cord transcriptomes</title><source>Oxford Journals Online</source><creator>Scoles, Daniel R ; Dansithong, Warunee ; Pflieger, Lance T ; Paul, Sharan ; Gandelman, Mandi ; Figueroa, Karla P ; Rigo, Frank ; Bennett, C Frank ; Pulst, Stefan M</creator><creatorcontrib>Scoles, Daniel R ; Dansithong, Warunee ; Pflieger, Lance T ; Paul, Sharan ; Gandelman, Mandi ; Figueroa, Karla P ; Rigo, Frank ; Bennett, C Frank ; Pulst, Stefan M</creatorcontrib><description>Abstract The spinocerebellar ataxia type 2 (SCA2) gene ATXN2 has a prominent role in the pathogenesis and treatment of amyotrophic lateral sclerosis (ALS). In addition to cerebellar ataxia, motor neuron disease is often seen in SCA2, and ATXN2 CAG repeat expansions in the long normal range increase ALS risk. Also, lowering ATXN2 expression in TDP-43 ALS mice prolongs their survival. Here we investigated the ATXN2 relationship with motor neuron dysfunction in vivo by comparing spinal cord (SC) transcriptomes reported from TDP-43 and SOD1 ALS mice and ALS patients with those from SCA2 mice. SC transcriptomes were determined using an SCA2 bacterial artificial chromosome mouse model expressing polyglutamine expanded ATXN2. SCA2 cerebellar transcriptomes were also determined, and we also investigated the modification of gene expression following treatment of SCA2 mice with an antisense oligonucleotide (ASO) lowering ATXN2 expression. Differentially expressed genes (DEGs) defined three interconnected pathways (innate immunity, fatty acid biosynthesis and cholesterol biosynthesis) in separate modules identified by weighted gene co-expression network analysis. Other key pathways included the complement system and lysosome/phagosome pathways. Of all DEGs in SC, 12.6% were also dysregulated in the cerebellum. Treatment of mice with an ATXN2 ASO also modified innate immunity, the complement system and lysosome/phagosome pathways. This study provides new insights into the underlying molecular basis of SCA2 SC phenotypes and demonstrates annotated pathways shared with TDP-43 and SOD1 ALS mice and ALS patients. It also emphasizes the importance of ATXN2 in motor neuron degeneration and confirms ATXN2 as a therapeutic target.</description><identifier>ISSN: 0964-6906</identifier><identifier>EISSN: 1460-2083</identifier><identifier>DOI: 10.1093/hmg/ddaa072</identifier><identifier>PMID: 32307524</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><ispartof>Human molecular genetics, 2020-06, Vol.29 (10), p.1658-1672</ispartof><rights>The Author(s) 2020. Published by Oxford University Press. 2020</rights><rights>The Author(s) 2020. Published by Oxford University Press.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-d7c84f6d0908c9ed23176975de931ec4be263f9dfbc623ab919dd8ac3247ee403</citedby><cites>FETCH-LOGICAL-c412t-d7c84f6d0908c9ed23176975de931ec4be263f9dfbc623ab919dd8ac3247ee403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32307524$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Scoles, Daniel R</creatorcontrib><creatorcontrib>Dansithong, Warunee</creatorcontrib><creatorcontrib>Pflieger, Lance T</creatorcontrib><creatorcontrib>Paul, Sharan</creatorcontrib><creatorcontrib>Gandelman, Mandi</creatorcontrib><creatorcontrib>Figueroa, Karla P</creatorcontrib><creatorcontrib>Rigo, Frank</creatorcontrib><creatorcontrib>Bennett, C Frank</creatorcontrib><creatorcontrib>Pulst, Stefan M</creatorcontrib><title>ALS-associated genes in SCA2 mouse spinal cord transcriptomes</title><title>Human molecular genetics</title><addtitle>Hum Mol Genet</addtitle><description>Abstract The spinocerebellar ataxia type 2 (SCA2) gene ATXN2 has a prominent role in the pathogenesis and treatment of amyotrophic lateral sclerosis (ALS). In addition to cerebellar ataxia, motor neuron disease is often seen in SCA2, and ATXN2 CAG repeat expansions in the long normal range increase ALS risk. Also, lowering ATXN2 expression in TDP-43 ALS mice prolongs their survival. Here we investigated the ATXN2 relationship with motor neuron dysfunction in vivo by comparing spinal cord (SC) transcriptomes reported from TDP-43 and SOD1 ALS mice and ALS patients with those from SCA2 mice. SC transcriptomes were determined using an SCA2 bacterial artificial chromosome mouse model expressing polyglutamine expanded ATXN2. SCA2 cerebellar transcriptomes were also determined, and we also investigated the modification of gene expression following treatment of SCA2 mice with an antisense oligonucleotide (ASO) lowering ATXN2 expression. Differentially expressed genes (DEGs) defined three interconnected pathways (innate immunity, fatty acid biosynthesis and cholesterol biosynthesis) in separate modules identified by weighted gene co-expression network analysis. Other key pathways included the complement system and lysosome/phagosome pathways. Of all DEGs in SC, 12.6% were also dysregulated in the cerebellum. Treatment of mice with an ATXN2 ASO also modified innate immunity, the complement system and lysosome/phagosome pathways. This study provides new insights into the underlying molecular basis of SCA2 SC phenotypes and demonstrates annotated pathways shared with TDP-43 and SOD1 ALS mice and ALS patients. It also emphasizes the importance of ATXN2 in motor neuron degeneration and confirms ATXN2 as a therapeutic target.</description><issn>0964-6906</issn><issn>1460-2083</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNp9kE1Lw0AQhhdRbK2evEtOIkjsfnU3e1AoxS8oeKiel83upF1JsjGbCP57I62iF09zmIdn3nkROiX4imDFpptqPXXOGCzpHhoTLnBKccb20RgrwVOhsBihoxhfMSaCM3mIRowyLGeUj9H1fLlKTYzBetOBS9ZQQ0x8nawWc5pUoY-QxMbXpkxsaF3StaaOtvVNFyqIx-igMGWEk92coJe72-fFQ7p8un9czJep5YR2qZM244VwWOHMKnCUESmUnDlQjIDlOVDBCuWK3ArKTK6Ici4zllEuAThmE3Sz9TZ9XoGzUA85St20vjLthw7G67-b2m_0OrxrySidST4ILnaCNrz1EDtd-WihLE0Nw4-aMkX5LKMkG9DLLWrbEGMLxc8ZgvVX4XooXO8KH-iz38l-2O-GB-B8C4S--df0CXmiinQ</recordid><startdate>20200627</startdate><enddate>20200627</enddate><creator>Scoles, Daniel R</creator><creator>Dansithong, Warunee</creator><creator>Pflieger, Lance T</creator><creator>Paul, Sharan</creator><creator>Gandelman, Mandi</creator><creator>Figueroa, Karla P</creator><creator>Rigo, Frank</creator><creator>Bennett, C Frank</creator><creator>Pulst, Stefan M</creator><general>Oxford University Press</general><scope>TOX</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200627</creationdate><title>ALS-associated genes in SCA2 mouse spinal cord transcriptomes</title><author>Scoles, Daniel R ; Dansithong, Warunee ; Pflieger, Lance T ; Paul, Sharan ; Gandelman, Mandi ; Figueroa, Karla P ; Rigo, Frank ; Bennett, C Frank ; Pulst, Stefan M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-d7c84f6d0908c9ed23176975de931ec4be263f9dfbc623ab919dd8ac3247ee403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scoles, Daniel R</creatorcontrib><creatorcontrib>Dansithong, Warunee</creatorcontrib><creatorcontrib>Pflieger, Lance T</creatorcontrib><creatorcontrib>Paul, Sharan</creatorcontrib><creatorcontrib>Gandelman, Mandi</creatorcontrib><creatorcontrib>Figueroa, Karla P</creatorcontrib><creatorcontrib>Rigo, Frank</creatorcontrib><creatorcontrib>Bennett, C Frank</creatorcontrib><creatorcontrib>Pulst, Stefan M</creatorcontrib><collection>Oxford Open</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Human molecular genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scoles, Daniel R</au><au>Dansithong, Warunee</au><au>Pflieger, Lance T</au><au>Paul, Sharan</au><au>Gandelman, Mandi</au><au>Figueroa, Karla P</au><au>Rigo, Frank</au><au>Bennett, C Frank</au><au>Pulst, Stefan M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ALS-associated genes in SCA2 mouse spinal cord transcriptomes</atitle><jtitle>Human molecular genetics</jtitle><addtitle>Hum Mol Genet</addtitle><date>2020-06-27</date><risdate>2020</risdate><volume>29</volume><issue>10</issue><spage>1658</spage><epage>1672</epage><pages>1658-1672</pages><issn>0964-6906</issn><eissn>1460-2083</eissn><abstract>Abstract The spinocerebellar ataxia type 2 (SCA2) gene ATXN2 has a prominent role in the pathogenesis and treatment of amyotrophic lateral sclerosis (ALS). In addition to cerebellar ataxia, motor neuron disease is often seen in SCA2, and ATXN2 CAG repeat expansions in the long normal range increase ALS risk. Also, lowering ATXN2 expression in TDP-43 ALS mice prolongs their survival. Here we investigated the ATXN2 relationship with motor neuron dysfunction in vivo by comparing spinal cord (SC) transcriptomes reported from TDP-43 and SOD1 ALS mice and ALS patients with those from SCA2 mice. SC transcriptomes were determined using an SCA2 bacterial artificial chromosome mouse model expressing polyglutamine expanded ATXN2. SCA2 cerebellar transcriptomes were also determined, and we also investigated the modification of gene expression following treatment of SCA2 mice with an antisense oligonucleotide (ASO) lowering ATXN2 expression. Differentially expressed genes (DEGs) defined three interconnected pathways (innate immunity, fatty acid biosynthesis and cholesterol biosynthesis) in separate modules identified by weighted gene co-expression network analysis. Other key pathways included the complement system and lysosome/phagosome pathways. Of all DEGs in SC, 12.6% were also dysregulated in the cerebellum. Treatment of mice with an ATXN2 ASO also modified innate immunity, the complement system and lysosome/phagosome pathways. This study provides new insights into the underlying molecular basis of SCA2 SC phenotypes and demonstrates annotated pathways shared with TDP-43 and SOD1 ALS mice and ALS patients. It also emphasizes the importance of ATXN2 in motor neuron degeneration and confirms ATXN2 as a therapeutic target.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>32307524</pmid><doi>10.1093/hmg/ddaa072</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0964-6906
ispartof Human molecular genetics, 2020-06, Vol.29 (10), p.1658-1672
issn 0964-6906
1460-2083
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7322574
source Oxford Journals Online
title ALS-associated genes in SCA2 mouse spinal cord transcriptomes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T20%3A40%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ALS-associated%20genes%20in%20SCA2%20mouse%20spinal%20cord%20transcriptomes&rft.jtitle=Human%20molecular%20genetics&rft.au=Scoles,%20Daniel%20R&rft.date=2020-06-27&rft.volume=29&rft.issue=10&rft.spage=1658&rft.epage=1672&rft.pages=1658-1672&rft.issn=0964-6906&rft.eissn=1460-2083&rft_id=info:doi/10.1093/hmg/ddaa072&rft_dat=%3Cproquest_pubme%3E2392458218%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c412t-d7c84f6d0908c9ed23176975de931ec4be263f9dfbc623ab919dd8ac3247ee403%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2392458218&rft_id=info:pmid/32307524&rft_oup_id=10.1093/hmg/ddaa072&rfr_iscdi=true