Loading…
Predicting Inpatient Medication Orders From Electronic Health Record Data
In a general inpatient population, we predicted patient‐specific medication orders based on structured information in the electronic health record (EHR). Data on over three million medication orders from an academic medical center were used to train two machine‐learning models: A deep learning seque...
Saved in:
Published in: | Clinical pharmacology and therapeutics 2020-07, Vol.108 (1), p.145-154 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4106-e6156f465fac4e517e453d44a092858f56a07a1d280c031f73ee491c8d5b2d813 |
---|---|
cites | cdi_FETCH-LOGICAL-c4106-e6156f465fac4e517e453d44a092858f56a07a1d280c031f73ee491c8d5b2d813 |
container_end_page | 154 |
container_issue | 1 |
container_start_page | 145 |
container_title | Clinical pharmacology and therapeutics |
container_volume | 108 |
creator | Rough, Kathryn Dai, Andrew M. Zhang, Kun Xue, Yuan Vardoulakis, Laura M. Cui, Claire Butte, Atul J. Howell, Michael D. Rajkomar, Alvin |
description | In a general inpatient population, we predicted patient‐specific medication orders based on structured information in the electronic health record (EHR). Data on over three million medication orders from an academic medical center were used to train two machine‐learning models: A deep learning sequence model and a logistic regression model. Both were compared with a baseline that ranked the most frequently ordered medications based on a patient’s discharge hospital service and amount of time since admission. Models were trained to predict from 990 possible medications at the time of order entry. Fifty‐five percent of medications ordered by physicians were ranked in the sequence model’s top‐10 predictions (logistic model: 49%) and 75% ranked in the top‐25 (logistic model: 69%). Ninety‐three percent of the sequence model’s top‐10 prediction sets contained at least one medication that physicians ordered within the next day. These findings demonstrate that medication orders can be predicted from information present in the EHR. |
doi_str_mv | 10.1002/cpt.1826 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7325318</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2374371910</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4106-e6156f465fac4e517e453d44a092858f56a07a1d280c031f73ee491c8d5b2d813</originalsourceid><addsrcrecordid>eNp1kE1PAjEQhhujEUQTf4HZo5fFfu52LyYGQUg0EIPnpnRnoWbZYrto-PcugqgHT53OPHlm8iJ0SXCXYExvzKruEkmTI9QmgtE4EUwcozbGOIszypIWOgvhtfnyTMpT1GKUcIIT2UajiYfcmtpW82hUrXRtoaqjp22vqV0VjX0OPkQD75ZRvwRTe1dZEw1Bl_UiegbjfB7d61qfo5NClwEu9m8HvQz6094wfhw_jHp3j7HZrowhISIpeCIKbTgIkgIXLOdc44xKIQuRaJxqklOJDWakSBkAz4iRuZjRXBLWQbc772o9W0Jumnu9LtXK26X2G-W0VX8nlV2ouXtXKaOCEdkIrvcC797WEGq1tMFAWeoK3DooylLOUpIR_IMa70LwUBzWEKy2yasmebVNvkGvfp91AL-jboB4B3zYEjb_ilRvMv0SfgLJQozE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2374371910</pqid></control><display><type>article</type><title>Predicting Inpatient Medication Orders From Electronic Health Record Data</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Rough, Kathryn ; Dai, Andrew M. ; Zhang, Kun ; Xue, Yuan ; Vardoulakis, Laura M. ; Cui, Claire ; Butte, Atul J. ; Howell, Michael D. ; Rajkomar, Alvin</creator><creatorcontrib>Rough, Kathryn ; Dai, Andrew M. ; Zhang, Kun ; Xue, Yuan ; Vardoulakis, Laura M. ; Cui, Claire ; Butte, Atul J. ; Howell, Michael D. ; Rajkomar, Alvin</creatorcontrib><description>In a general inpatient population, we predicted patient‐specific medication orders based on structured information in the electronic health record (EHR). Data on over three million medication orders from an academic medical center were used to train two machine‐learning models: A deep learning sequence model and a logistic regression model. Both were compared with a baseline that ranked the most frequently ordered medications based on a patient’s discharge hospital service and amount of time since admission. Models were trained to predict from 990 possible medications at the time of order entry. Fifty‐five percent of medications ordered by physicians were ranked in the sequence model’s top‐10 predictions (logistic model: 49%) and 75% ranked in the top‐25 (logistic model: 69%). Ninety‐three percent of the sequence model’s top‐10 prediction sets contained at least one medication that physicians ordered within the next day. These findings demonstrate that medication orders can be predicted from information present in the EHR.</description><identifier>ISSN: 0009-9236</identifier><identifier>EISSN: 1532-6535</identifier><identifier>DOI: 10.1002/cpt.1826</identifier><identifier>PMID: 32141068</identifier><language>eng</language><publisher>United States: John Wiley and Sons Inc</publisher><subject>Academic Medical Centers ; Adolescent ; Adult ; Aged ; Aged, 80 and over ; Deep Learning ; Electronic Health Records - statistics & numerical data ; Female ; Hospitalization ; Humans ; Inpatients ; Logistic Models ; Machine Learning ; Male ; Medical Order Entry Systems - statistics & numerical data ; Middle Aged ; Time Factors ; Young Adult</subject><ispartof>Clinical pharmacology and therapeutics, 2020-07, Vol.108 (1), p.145-154</ispartof><rights>2020 Google. published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.</rights><rights>2020 Google. Clinical Pharmacology & Therapeutics published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4106-e6156f465fac4e517e453d44a092858f56a07a1d280c031f73ee491c8d5b2d813</citedby><cites>FETCH-LOGICAL-c4106-e6156f465fac4e517e453d44a092858f56a07a1d280c031f73ee491c8d5b2d813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32141068$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rough, Kathryn</creatorcontrib><creatorcontrib>Dai, Andrew M.</creatorcontrib><creatorcontrib>Zhang, Kun</creatorcontrib><creatorcontrib>Xue, Yuan</creatorcontrib><creatorcontrib>Vardoulakis, Laura M.</creatorcontrib><creatorcontrib>Cui, Claire</creatorcontrib><creatorcontrib>Butte, Atul J.</creatorcontrib><creatorcontrib>Howell, Michael D.</creatorcontrib><creatorcontrib>Rajkomar, Alvin</creatorcontrib><title>Predicting Inpatient Medication Orders From Electronic Health Record Data</title><title>Clinical pharmacology and therapeutics</title><addtitle>Clin Pharmacol Ther</addtitle><description>In a general inpatient population, we predicted patient‐specific medication orders based on structured information in the electronic health record (EHR). Data on over three million medication orders from an academic medical center were used to train two machine‐learning models: A deep learning sequence model and a logistic regression model. Both were compared with a baseline that ranked the most frequently ordered medications based on a patient’s discharge hospital service and amount of time since admission. Models were trained to predict from 990 possible medications at the time of order entry. Fifty‐five percent of medications ordered by physicians were ranked in the sequence model’s top‐10 predictions (logistic model: 49%) and 75% ranked in the top‐25 (logistic model: 69%). Ninety‐three percent of the sequence model’s top‐10 prediction sets contained at least one medication that physicians ordered within the next day. These findings demonstrate that medication orders can be predicted from information present in the EHR.</description><subject>Academic Medical Centers</subject><subject>Adolescent</subject><subject>Adult</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Deep Learning</subject><subject>Electronic Health Records - statistics & numerical data</subject><subject>Female</subject><subject>Hospitalization</subject><subject>Humans</subject><subject>Inpatients</subject><subject>Logistic Models</subject><subject>Machine Learning</subject><subject>Male</subject><subject>Medical Order Entry Systems - statistics & numerical data</subject><subject>Middle Aged</subject><subject>Time Factors</subject><subject>Young Adult</subject><issn>0009-9236</issn><issn>1532-6535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp1kE1PAjEQhhujEUQTf4HZo5fFfu52LyYGQUg0EIPnpnRnoWbZYrto-PcugqgHT53OPHlm8iJ0SXCXYExvzKruEkmTI9QmgtE4EUwcozbGOIszypIWOgvhtfnyTMpT1GKUcIIT2UajiYfcmtpW82hUrXRtoaqjp22vqV0VjX0OPkQD75ZRvwRTe1dZEw1Bl_UiegbjfB7d61qfo5NClwEu9m8HvQz6094wfhw_jHp3j7HZrowhISIpeCIKbTgIkgIXLOdc44xKIQuRaJxqklOJDWakSBkAz4iRuZjRXBLWQbc772o9W0Jumnu9LtXK26X2G-W0VX8nlV2ouXtXKaOCEdkIrvcC797WEGq1tMFAWeoK3DooylLOUpIR_IMa70LwUBzWEKy2yasmebVNvkGvfp91AL-jboB4B3zYEjb_ilRvMv0SfgLJQozE</recordid><startdate>202007</startdate><enddate>202007</enddate><creator>Rough, Kathryn</creator><creator>Dai, Andrew M.</creator><creator>Zhang, Kun</creator><creator>Xue, Yuan</creator><creator>Vardoulakis, Laura M.</creator><creator>Cui, Claire</creator><creator>Butte, Atul J.</creator><creator>Howell, Michael D.</creator><creator>Rajkomar, Alvin</creator><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>202007</creationdate><title>Predicting Inpatient Medication Orders From Electronic Health Record Data</title><author>Rough, Kathryn ; Dai, Andrew M. ; Zhang, Kun ; Xue, Yuan ; Vardoulakis, Laura M. ; Cui, Claire ; Butte, Atul J. ; Howell, Michael D. ; Rajkomar, Alvin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4106-e6156f465fac4e517e453d44a092858f56a07a1d280c031f73ee491c8d5b2d813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Academic Medical Centers</topic><topic>Adolescent</topic><topic>Adult</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Deep Learning</topic><topic>Electronic Health Records - statistics & numerical data</topic><topic>Female</topic><topic>Hospitalization</topic><topic>Humans</topic><topic>Inpatients</topic><topic>Logistic Models</topic><topic>Machine Learning</topic><topic>Male</topic><topic>Medical Order Entry Systems - statistics & numerical data</topic><topic>Middle Aged</topic><topic>Time Factors</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rough, Kathryn</creatorcontrib><creatorcontrib>Dai, Andrew M.</creatorcontrib><creatorcontrib>Zhang, Kun</creatorcontrib><creatorcontrib>Xue, Yuan</creatorcontrib><creatorcontrib>Vardoulakis, Laura M.</creatorcontrib><creatorcontrib>Cui, Claire</creatorcontrib><creatorcontrib>Butte, Atul J.</creatorcontrib><creatorcontrib>Howell, Michael D.</creatorcontrib><creatorcontrib>Rajkomar, Alvin</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Clinical pharmacology and therapeutics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rough, Kathryn</au><au>Dai, Andrew M.</au><au>Zhang, Kun</au><au>Xue, Yuan</au><au>Vardoulakis, Laura M.</au><au>Cui, Claire</au><au>Butte, Atul J.</au><au>Howell, Michael D.</au><au>Rajkomar, Alvin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting Inpatient Medication Orders From Electronic Health Record Data</atitle><jtitle>Clinical pharmacology and therapeutics</jtitle><addtitle>Clin Pharmacol Ther</addtitle><date>2020-07</date><risdate>2020</risdate><volume>108</volume><issue>1</issue><spage>145</spage><epage>154</epage><pages>145-154</pages><issn>0009-9236</issn><eissn>1532-6535</eissn><abstract>In a general inpatient population, we predicted patient‐specific medication orders based on structured information in the electronic health record (EHR). Data on over three million medication orders from an academic medical center were used to train two machine‐learning models: A deep learning sequence model and a logistic regression model. Both were compared with a baseline that ranked the most frequently ordered medications based on a patient’s discharge hospital service and amount of time since admission. Models were trained to predict from 990 possible medications at the time of order entry. Fifty‐five percent of medications ordered by physicians were ranked in the sequence model’s top‐10 predictions (logistic model: 49%) and 75% ranked in the top‐25 (logistic model: 69%). Ninety‐three percent of the sequence model’s top‐10 prediction sets contained at least one medication that physicians ordered within the next day. These findings demonstrate that medication orders can be predicted from information present in the EHR.</abstract><cop>United States</cop><pub>John Wiley and Sons Inc</pub><pmid>32141068</pmid><doi>10.1002/cpt.1826</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0009-9236 |
ispartof | Clinical pharmacology and therapeutics, 2020-07, Vol.108 (1), p.145-154 |
issn | 0009-9236 1532-6535 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7325318 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Academic Medical Centers Adolescent Adult Aged Aged, 80 and over Deep Learning Electronic Health Records - statistics & numerical data Female Hospitalization Humans Inpatients Logistic Models Machine Learning Male Medical Order Entry Systems - statistics & numerical data Middle Aged Time Factors Young Adult |
title | Predicting Inpatient Medication Orders From Electronic Health Record Data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T07%3A57%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20Inpatient%20Medication%20Orders%20From%20Electronic%20Health%20Record%20Data&rft.jtitle=Clinical%20pharmacology%20and%20therapeutics&rft.au=Rough,%20Kathryn&rft.date=2020-07&rft.volume=108&rft.issue=1&rft.spage=145&rft.epage=154&rft.pages=145-154&rft.issn=0009-9236&rft.eissn=1532-6535&rft_id=info:doi/10.1002/cpt.1826&rft_dat=%3Cproquest_pubme%3E2374371910%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4106-e6156f465fac4e517e453d44a092858f56a07a1d280c031f73ee491c8d5b2d813%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2374371910&rft_id=info:pmid/32141068&rfr_iscdi=true |