Loading…

Predicting Inpatient Medication Orders From Electronic Health Record Data

In a general inpatient population, we predicted patient‐specific medication orders based on structured information in the electronic health record (EHR). Data on over three million medication orders from an academic medical center were used to train two machine‐learning models: A deep learning seque...

Full description

Saved in:
Bibliographic Details
Published in:Clinical pharmacology and therapeutics 2020-07, Vol.108 (1), p.145-154
Main Authors: Rough, Kathryn, Dai, Andrew M., Zhang, Kun, Xue, Yuan, Vardoulakis, Laura M., Cui, Claire, Butte, Atul J., Howell, Michael D., Rajkomar, Alvin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4106-e6156f465fac4e517e453d44a092858f56a07a1d280c031f73ee491c8d5b2d813
cites cdi_FETCH-LOGICAL-c4106-e6156f465fac4e517e453d44a092858f56a07a1d280c031f73ee491c8d5b2d813
container_end_page 154
container_issue 1
container_start_page 145
container_title Clinical pharmacology and therapeutics
container_volume 108
creator Rough, Kathryn
Dai, Andrew M.
Zhang, Kun
Xue, Yuan
Vardoulakis, Laura M.
Cui, Claire
Butte, Atul J.
Howell, Michael D.
Rajkomar, Alvin
description In a general inpatient population, we predicted patient‐specific medication orders based on structured information in the electronic health record (EHR). Data on over three million medication orders from an academic medical center were used to train two machine‐learning models: A deep learning sequence model and a logistic regression model. Both were compared with a baseline that ranked the most frequently ordered medications based on a patient’s discharge hospital service and amount of time since admission. Models were trained to predict from 990 possible medications at the time of order entry. Fifty‐five percent of medications ordered by physicians were ranked in the sequence model’s top‐10 predictions (logistic model: 49%) and 75% ranked in the top‐25 (logistic model: 69%). Ninety‐three percent of the sequence model’s top‐10 prediction sets contained at least one medication that physicians ordered within the next day. These findings demonstrate that medication orders can be predicted from information present in the EHR.
doi_str_mv 10.1002/cpt.1826
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7325318</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2374371910</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4106-e6156f465fac4e517e453d44a092858f56a07a1d280c031f73ee491c8d5b2d813</originalsourceid><addsrcrecordid>eNp1kE1PAjEQhhujEUQTf4HZo5fFfu52LyYGQUg0EIPnpnRnoWbZYrto-PcugqgHT53OPHlm8iJ0SXCXYExvzKruEkmTI9QmgtE4EUwcozbGOIszypIWOgvhtfnyTMpT1GKUcIIT2UajiYfcmtpW82hUrXRtoaqjp22vqV0VjX0OPkQD75ZRvwRTe1dZEw1Bl_UiegbjfB7d61qfo5NClwEu9m8HvQz6094wfhw_jHp3j7HZrowhISIpeCIKbTgIkgIXLOdc44xKIQuRaJxqklOJDWakSBkAz4iRuZjRXBLWQbc772o9W0Jumnu9LtXK26X2G-W0VX8nlV2ouXtXKaOCEdkIrvcC797WEGq1tMFAWeoK3DooylLOUpIR_IMa70LwUBzWEKy2yasmebVNvkGvfp91AL-jboB4B3zYEjb_ilRvMv0SfgLJQozE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2374371910</pqid></control><display><type>article</type><title>Predicting Inpatient Medication Orders From Electronic Health Record Data</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Rough, Kathryn ; Dai, Andrew M. ; Zhang, Kun ; Xue, Yuan ; Vardoulakis, Laura M. ; Cui, Claire ; Butte, Atul J. ; Howell, Michael D. ; Rajkomar, Alvin</creator><creatorcontrib>Rough, Kathryn ; Dai, Andrew M. ; Zhang, Kun ; Xue, Yuan ; Vardoulakis, Laura M. ; Cui, Claire ; Butte, Atul J. ; Howell, Michael D. ; Rajkomar, Alvin</creatorcontrib><description>In a general inpatient population, we predicted patient‐specific medication orders based on structured information in the electronic health record (EHR). Data on over three million medication orders from an academic medical center were used to train two machine‐learning models: A deep learning sequence model and a logistic regression model. Both were compared with a baseline that ranked the most frequently ordered medications based on a patient’s discharge hospital service and amount of time since admission. Models were trained to predict from 990 possible medications at the time of order entry. Fifty‐five percent of medications ordered by physicians were ranked in the sequence model’s top‐10 predictions (logistic model: 49%) and 75% ranked in the top‐25 (logistic model: 69%). Ninety‐three percent of the sequence model’s top‐10 prediction sets contained at least one medication that physicians ordered within the next day. These findings demonstrate that medication orders can be predicted from information present in the EHR.</description><identifier>ISSN: 0009-9236</identifier><identifier>EISSN: 1532-6535</identifier><identifier>DOI: 10.1002/cpt.1826</identifier><identifier>PMID: 32141068</identifier><language>eng</language><publisher>United States: John Wiley and Sons Inc</publisher><subject>Academic Medical Centers ; Adolescent ; Adult ; Aged ; Aged, 80 and over ; Deep Learning ; Electronic Health Records - statistics &amp; numerical data ; Female ; Hospitalization ; Humans ; Inpatients ; Logistic Models ; Machine Learning ; Male ; Medical Order Entry Systems - statistics &amp; numerical data ; Middle Aged ; Time Factors ; Young Adult</subject><ispartof>Clinical pharmacology and therapeutics, 2020-07, Vol.108 (1), p.145-154</ispartof><rights>2020 Google. published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.</rights><rights>2020 Google. Clinical Pharmacology &amp; Therapeutics published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4106-e6156f465fac4e517e453d44a092858f56a07a1d280c031f73ee491c8d5b2d813</citedby><cites>FETCH-LOGICAL-c4106-e6156f465fac4e517e453d44a092858f56a07a1d280c031f73ee491c8d5b2d813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32141068$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rough, Kathryn</creatorcontrib><creatorcontrib>Dai, Andrew M.</creatorcontrib><creatorcontrib>Zhang, Kun</creatorcontrib><creatorcontrib>Xue, Yuan</creatorcontrib><creatorcontrib>Vardoulakis, Laura M.</creatorcontrib><creatorcontrib>Cui, Claire</creatorcontrib><creatorcontrib>Butte, Atul J.</creatorcontrib><creatorcontrib>Howell, Michael D.</creatorcontrib><creatorcontrib>Rajkomar, Alvin</creatorcontrib><title>Predicting Inpatient Medication Orders From Electronic Health Record Data</title><title>Clinical pharmacology and therapeutics</title><addtitle>Clin Pharmacol Ther</addtitle><description>In a general inpatient population, we predicted patient‐specific medication orders based on structured information in the electronic health record (EHR). Data on over three million medication orders from an academic medical center were used to train two machine‐learning models: A deep learning sequence model and a logistic regression model. Both were compared with a baseline that ranked the most frequently ordered medications based on a patient’s discharge hospital service and amount of time since admission. Models were trained to predict from 990 possible medications at the time of order entry. Fifty‐five percent of medications ordered by physicians were ranked in the sequence model’s top‐10 predictions (logistic model: 49%) and 75% ranked in the top‐25 (logistic model: 69%). Ninety‐three percent of the sequence model’s top‐10 prediction sets contained at least one medication that physicians ordered within the next day. These findings demonstrate that medication orders can be predicted from information present in the EHR.</description><subject>Academic Medical Centers</subject><subject>Adolescent</subject><subject>Adult</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Deep Learning</subject><subject>Electronic Health Records - statistics &amp; numerical data</subject><subject>Female</subject><subject>Hospitalization</subject><subject>Humans</subject><subject>Inpatients</subject><subject>Logistic Models</subject><subject>Machine Learning</subject><subject>Male</subject><subject>Medical Order Entry Systems - statistics &amp; numerical data</subject><subject>Middle Aged</subject><subject>Time Factors</subject><subject>Young Adult</subject><issn>0009-9236</issn><issn>1532-6535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp1kE1PAjEQhhujEUQTf4HZo5fFfu52LyYGQUg0EIPnpnRnoWbZYrto-PcugqgHT53OPHlm8iJ0SXCXYExvzKruEkmTI9QmgtE4EUwcozbGOIszypIWOgvhtfnyTMpT1GKUcIIT2UajiYfcmtpW82hUrXRtoaqjp22vqV0VjX0OPkQD75ZRvwRTe1dZEw1Bl_UiegbjfB7d61qfo5NClwEu9m8HvQz6094wfhw_jHp3j7HZrowhISIpeCIKbTgIkgIXLOdc44xKIQuRaJxqklOJDWakSBkAz4iRuZjRXBLWQbc772o9W0Jumnu9LtXK26X2G-W0VX8nlV2ouXtXKaOCEdkIrvcC797WEGq1tMFAWeoK3DooylLOUpIR_IMa70LwUBzWEKy2yasmebVNvkGvfp91AL-jboB4B3zYEjb_ilRvMv0SfgLJQozE</recordid><startdate>202007</startdate><enddate>202007</enddate><creator>Rough, Kathryn</creator><creator>Dai, Andrew M.</creator><creator>Zhang, Kun</creator><creator>Xue, Yuan</creator><creator>Vardoulakis, Laura M.</creator><creator>Cui, Claire</creator><creator>Butte, Atul J.</creator><creator>Howell, Michael D.</creator><creator>Rajkomar, Alvin</creator><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>202007</creationdate><title>Predicting Inpatient Medication Orders From Electronic Health Record Data</title><author>Rough, Kathryn ; Dai, Andrew M. ; Zhang, Kun ; Xue, Yuan ; Vardoulakis, Laura M. ; Cui, Claire ; Butte, Atul J. ; Howell, Michael D. ; Rajkomar, Alvin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4106-e6156f465fac4e517e453d44a092858f56a07a1d280c031f73ee491c8d5b2d813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Academic Medical Centers</topic><topic>Adolescent</topic><topic>Adult</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Deep Learning</topic><topic>Electronic Health Records - statistics &amp; numerical data</topic><topic>Female</topic><topic>Hospitalization</topic><topic>Humans</topic><topic>Inpatients</topic><topic>Logistic Models</topic><topic>Machine Learning</topic><topic>Male</topic><topic>Medical Order Entry Systems - statistics &amp; numerical data</topic><topic>Middle Aged</topic><topic>Time Factors</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rough, Kathryn</creatorcontrib><creatorcontrib>Dai, Andrew M.</creatorcontrib><creatorcontrib>Zhang, Kun</creatorcontrib><creatorcontrib>Xue, Yuan</creatorcontrib><creatorcontrib>Vardoulakis, Laura M.</creatorcontrib><creatorcontrib>Cui, Claire</creatorcontrib><creatorcontrib>Butte, Atul J.</creatorcontrib><creatorcontrib>Howell, Michael D.</creatorcontrib><creatorcontrib>Rajkomar, Alvin</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Clinical pharmacology and therapeutics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rough, Kathryn</au><au>Dai, Andrew M.</au><au>Zhang, Kun</au><au>Xue, Yuan</au><au>Vardoulakis, Laura M.</au><au>Cui, Claire</au><au>Butte, Atul J.</au><au>Howell, Michael D.</au><au>Rajkomar, Alvin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting Inpatient Medication Orders From Electronic Health Record Data</atitle><jtitle>Clinical pharmacology and therapeutics</jtitle><addtitle>Clin Pharmacol Ther</addtitle><date>2020-07</date><risdate>2020</risdate><volume>108</volume><issue>1</issue><spage>145</spage><epage>154</epage><pages>145-154</pages><issn>0009-9236</issn><eissn>1532-6535</eissn><abstract>In a general inpatient population, we predicted patient‐specific medication orders based on structured information in the electronic health record (EHR). Data on over three million medication orders from an academic medical center were used to train two machine‐learning models: A deep learning sequence model and a logistic regression model. Both were compared with a baseline that ranked the most frequently ordered medications based on a patient’s discharge hospital service and amount of time since admission. Models were trained to predict from 990 possible medications at the time of order entry. Fifty‐five percent of medications ordered by physicians were ranked in the sequence model’s top‐10 predictions (logistic model: 49%) and 75% ranked in the top‐25 (logistic model: 69%). Ninety‐three percent of the sequence model’s top‐10 prediction sets contained at least one medication that physicians ordered within the next day. These findings demonstrate that medication orders can be predicted from information present in the EHR.</abstract><cop>United States</cop><pub>John Wiley and Sons Inc</pub><pmid>32141068</pmid><doi>10.1002/cpt.1826</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0009-9236
ispartof Clinical pharmacology and therapeutics, 2020-07, Vol.108 (1), p.145-154
issn 0009-9236
1532-6535
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7325318
source Wiley-Blackwell Read & Publish Collection
subjects Academic Medical Centers
Adolescent
Adult
Aged
Aged, 80 and over
Deep Learning
Electronic Health Records - statistics & numerical data
Female
Hospitalization
Humans
Inpatients
Logistic Models
Machine Learning
Male
Medical Order Entry Systems - statistics & numerical data
Middle Aged
Time Factors
Young Adult
title Predicting Inpatient Medication Orders From Electronic Health Record Data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T07%3A57%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20Inpatient%20Medication%20Orders%20From%20Electronic%20Health%20Record%20Data&rft.jtitle=Clinical%20pharmacology%20and%20therapeutics&rft.au=Rough,%20Kathryn&rft.date=2020-07&rft.volume=108&rft.issue=1&rft.spage=145&rft.epage=154&rft.pages=145-154&rft.issn=0009-9236&rft.eissn=1532-6535&rft_id=info:doi/10.1002/cpt.1826&rft_dat=%3Cproquest_pubme%3E2374371910%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4106-e6156f465fac4e517e453d44a092858f56a07a1d280c031f73ee491c8d5b2d813%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2374371910&rft_id=info:pmid/32141068&rfr_iscdi=true