Loading…
9-Acridinemethanamine and Acridine-9-Carboxaldehyde as Potential Fluorescence Lifetime pH Indicators
A significant challenge concerning the development of fluorescence lifetime (FL) based pH sensors is the paucity of fluorophores with sufficiently large FL variation with pH. Acridine is amongst the indicators with highest fluoresce lifetime responses to pH, with a change in lifetime of about 13 ns...
Saved in:
Published in: | Journal of fluorescence 2020-07, Vol.30 (4), p.901-906 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A significant challenge concerning the development of fluorescence lifetime (FL) based pH sensors is the paucity of fluorophores with sufficiently large FL variation with pH. Acridine is amongst the indicators with highest fluoresce lifetime responses to pH, with a change in lifetime of about 13 ns within a pH range of 5–8. Here we examine the two acridine derivatives, 9-acridinemethanamine (9-AMA) and acridine-9-carbaldehyde (9-ACA) in terms of their FL pH sensitivity and pH sensing range. Both indicators are characterized when dissolved in buffer solutions, as well as when immobilized in support materials. 9-AMA has a change in FL of 11 ns between pH 2–5, both when dissolved in solution and when immobilized in surfactant-filled mesoporous silica. The FL of 9-ACA is not sensitive to pH when dissolved in buffer solutions; however, when covalently bound to amine-modified silica, its FL changes 15 ns between pH 3–6. 9-AMA and 9-ACA represent promising FL in the pH range of pH 2–6, and could potentially form the basis of new FL pH sensors.
Graphical Abstract |
---|---|
ISSN: | 1053-0509 1573-4994 |
DOI: | 10.1007/s10895-020-02564-5 |