Loading…

The Discovery of a Putative Allosteric Site in the SARS-CoV‑2 Spike Protein Using an Integrated Structural/Dynamic Approach

SARS-CoV-2 has caused the largest pandemic of the twenty-first century (COVID-19), threatening the life and economy of all countries in the world. The identification of novel therapies and vaccines that can mitigate or control this global health threat is among the most important challenges facing b...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Proteome Research 2020-11, Vol.19 (11), p.4576-4586
Main Authors: Di Paola, Luisa, Hadi-Alijanvand, Hamid, Song, Xingyu, Hu, Guang, Giuliani, Alessandro
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a481t-4c6b21e2d5721150b4d76cfa34278e4fe983a307dc0abf10fc99d2ee41acbea83
cites cdi_FETCH-LOGICAL-a481t-4c6b21e2d5721150b4d76cfa34278e4fe983a307dc0abf10fc99d2ee41acbea83
container_end_page 4586
container_issue 11
container_start_page 4576
container_title Journal of Proteome Research
container_volume 19
creator Di Paola, Luisa
Hadi-Alijanvand, Hamid
Song, Xingyu
Hu, Guang
Giuliani, Alessandro
description SARS-CoV-2 has caused the largest pandemic of the twenty-first century (COVID-19), threatening the life and economy of all countries in the world. The identification of novel therapies and vaccines that can mitigate or control this global health threat is among the most important challenges facing biomedical sciences. To construct a long-term strategy to fight both SARS-CoV-2 and other possible future threats from coronaviruses, it is critical to understand the molecular mechanisms underlying the virus action. The viral entry and associated infectivity stems from the formation of the SARS-CoV-2 spike protein complex with angiotensin-converting enzyme 2 (ACE2). The detection of putative allosteric sites on the viral spike protein molecule can be used to elucidate the molecular pathways that can be targeted with allosteric drugs to weaken the spike-ACE2 interaction and, thus, reduce viral infectivity. In this study, we present the results of the application of different computational methods aimed at detecting allosteric sites on the SARS-CoV-2 spike protein. The adopted tools consisted of the protein contact networks (PCNs), SEPAS (Affinity by Flexibility), and perturbation response scanning (PRS) based on elastic network modes. All of these methods were applied to the ACE2 complex with both the SARS-CoV2 and SARS-CoV spike proteins. All of the adopted analyses converged toward a specific region (allosteric modulation region [AMR]), present in both complexes and predicted to act as an allosteric site modulating the binding of the spike protein with ACE2. Preliminary results on hepcidin (a molecule with strong structural and sequence with AMR) indicated an inhibitory effect on the binding affinity of the spike protein toward the ACE2 protein.
doi_str_mv 10.1021/acs.jproteome.0c00273
format article
fullrecord <record><control><sourceid>proquest_COVID</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7331933</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2414891462</sourcerecordid><originalsourceid>FETCH-LOGICAL-a481t-4c6b21e2d5721150b4d76cfa34278e4fe983a307dc0abf10fc99d2ee41acbea83</originalsourceid><addsrcrecordid>eNp9kd1u1DAQhS0EoqXwCCBLXGfrsZ1NcoO02haoVImKtNxajjPZ9bIbB9tZaS-QeAVekSfBZX8EN1zNSPOdM0c6hLwGNgHG4VKbMFkN3kV0G5wwwxgvxBNyDrnIM1Gx4ulxLytxRl6EsGIM8oKJ5-RM8DyHqSzPyff7JdIrG4zbot9R11FN78aoo90ina3XLkT01tDaRqS2pzHh9exznc3dl18_fnJaD_Yr0rvHIOn8EGy_oLqnN33EhdcRW1pHP5o4er2-vNr1epPcZkNKrs3yJXnW6XXAV4d5QR7eX9_PP2a3nz7czGe3mZYlxEyaacMBeZsXHCBnjWyLqem0kLwoUXZYlUILVrSG6aYD1pmqajmiBG0a1KW4IO_2vsPYbLA12McURw3ebrTfKaet-vfS26VauK0qhIBKiGTw9mDg3bcRQ1QrN_o-ZVZcgiwrkFOeqHxPGe9C8NidPgBTj62p1Jo6taYOrSXdm7_jnVTHmhIAe-CP_vj5_6a_ARA8q1I</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2414891462</pqid></control><display><type>article</type><title>The Discovery of a Putative Allosteric Site in the SARS-CoV‑2 Spike Protein Using an Integrated Structural/Dynamic Approach</title><source>Coronavirus Research Database</source><creator>Di Paola, Luisa ; Hadi-Alijanvand, Hamid ; Song, Xingyu ; Hu, Guang ; Giuliani, Alessandro</creator><creatorcontrib>Di Paola, Luisa ; Hadi-Alijanvand, Hamid ; Song, Xingyu ; Hu, Guang ; Giuliani, Alessandro</creatorcontrib><description>SARS-CoV-2 has caused the largest pandemic of the twenty-first century (COVID-19), threatening the life and economy of all countries in the world. The identification of novel therapies and vaccines that can mitigate or control this global health threat is among the most important challenges facing biomedical sciences. To construct a long-term strategy to fight both SARS-CoV-2 and other possible future threats from coronaviruses, it is critical to understand the molecular mechanisms underlying the virus action. The viral entry and associated infectivity stems from the formation of the SARS-CoV-2 spike protein complex with angiotensin-converting enzyme 2 (ACE2). The detection of putative allosteric sites on the viral spike protein molecule can be used to elucidate the molecular pathways that can be targeted with allosteric drugs to weaken the spike-ACE2 interaction and, thus, reduce viral infectivity. In this study, we present the results of the application of different computational methods aimed at detecting allosteric sites on the SARS-CoV-2 spike protein. The adopted tools consisted of the protein contact networks (PCNs), SEPAS (Affinity by Flexibility), and perturbation response scanning (PRS) based on elastic network modes. All of these methods were applied to the ACE2 complex with both the SARS-CoV2 and SARS-CoV spike proteins. All of the adopted analyses converged toward a specific region (allosteric modulation region [AMR]), present in both complexes and predicted to act as an allosteric site modulating the binding of the spike protein with ACE2. Preliminary results on hepcidin (a molecule with strong structural and sequence with AMR) indicated an inhibitory effect on the binding affinity of the spike protein toward the ACE2 protein.</description><identifier>ISSN: 1535-3893</identifier><identifier>EISSN: 1535-3907</identifier><identifier>DOI: 10.1021/acs.jproteome.0c00273</identifier><identifier>PMID: 32551648</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Allosteric Site - genetics ; Angiotensin-Converting Enzyme 2 ; Betacoronavirus - genetics ; Binding Sites ; Coronavirus Infections - virology ; COVID-19 ; Drug Discovery ; Humans ; Models, Molecular ; Neural Networks, Computer ; Pandemics ; Peptidyl-Dipeptidase A - chemistry ; Peptidyl-Dipeptidase A - metabolism ; Pneumonia, Viral - virology ; Protein Binding ; SARS-CoV-2 ; Spike Glycoprotein, Coronavirus - chemistry ; Spike Glycoprotein, Coronavirus - genetics ; Spike Glycoprotein, Coronavirus - metabolism</subject><ispartof>Journal of Proteome Research, 2020-11, Vol.19 (11), p.4576-4586</ispartof><rights>2020. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at https://www.acs.org/content/acs/en/terms.html</rights><rights>Copyright © 2020 American Chemical Society 2020 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a481t-4c6b21e2d5721150b4d76cfa34278e4fe983a307dc0abf10fc99d2ee41acbea83</citedby><cites>FETCH-LOGICAL-a481t-4c6b21e2d5721150b4d76cfa34278e4fe983a307dc0abf10fc99d2ee41acbea83</cites><orcidid>0000-0002-8754-1541 ; 0000-0001-5329-8689</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2414891462?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,38516,43895</link.rule.ids><linktorsrc>$$Uhttps://www.proquest.com/docview/2414891462?pq-origsite=primo$$EView_record_in_ProQuest$$FView_record_in_$$GProQuest</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32551648$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Di Paola, Luisa</creatorcontrib><creatorcontrib>Hadi-Alijanvand, Hamid</creatorcontrib><creatorcontrib>Song, Xingyu</creatorcontrib><creatorcontrib>Hu, Guang</creatorcontrib><creatorcontrib>Giuliani, Alessandro</creatorcontrib><title>The Discovery of a Putative Allosteric Site in the SARS-CoV‑2 Spike Protein Using an Integrated Structural/Dynamic Approach</title><title>Journal of Proteome Research</title><addtitle>J. Proteome Res</addtitle><description>SARS-CoV-2 has caused the largest pandemic of the twenty-first century (COVID-19), threatening the life and economy of all countries in the world. The identification of novel therapies and vaccines that can mitigate or control this global health threat is among the most important challenges facing biomedical sciences. To construct a long-term strategy to fight both SARS-CoV-2 and other possible future threats from coronaviruses, it is critical to understand the molecular mechanisms underlying the virus action. The viral entry and associated infectivity stems from the formation of the SARS-CoV-2 spike protein complex with angiotensin-converting enzyme 2 (ACE2). The detection of putative allosteric sites on the viral spike protein molecule can be used to elucidate the molecular pathways that can be targeted with allosteric drugs to weaken the spike-ACE2 interaction and, thus, reduce viral infectivity. In this study, we present the results of the application of different computational methods aimed at detecting allosteric sites on the SARS-CoV-2 spike protein. The adopted tools consisted of the protein contact networks (PCNs), SEPAS (Affinity by Flexibility), and perturbation response scanning (PRS) based on elastic network modes. All of these methods were applied to the ACE2 complex with both the SARS-CoV2 and SARS-CoV spike proteins. All of the adopted analyses converged toward a specific region (allosteric modulation region [AMR]), present in both complexes and predicted to act as an allosteric site modulating the binding of the spike protein with ACE2. Preliminary results on hepcidin (a molecule with strong structural and sequence with AMR) indicated an inhibitory effect on the binding affinity of the spike protein toward the ACE2 protein.</description><subject>Allosteric Site - genetics</subject><subject>Angiotensin-Converting Enzyme 2</subject><subject>Betacoronavirus - genetics</subject><subject>Binding Sites</subject><subject>Coronavirus Infections - virology</subject><subject>COVID-19</subject><subject>Drug Discovery</subject><subject>Humans</subject><subject>Models, Molecular</subject><subject>Neural Networks, Computer</subject><subject>Pandemics</subject><subject>Peptidyl-Dipeptidase A - chemistry</subject><subject>Peptidyl-Dipeptidase A - metabolism</subject><subject>Pneumonia, Viral - virology</subject><subject>Protein Binding</subject><subject>SARS-CoV-2</subject><subject>Spike Glycoprotein, Coronavirus - chemistry</subject><subject>Spike Glycoprotein, Coronavirus - genetics</subject><subject>Spike Glycoprotein, Coronavirus - metabolism</subject><issn>1535-3893</issn><issn>1535-3907</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><recordid>eNp9kd1u1DAQhS0EoqXwCCBLXGfrsZ1NcoO02haoVImKtNxajjPZ9bIbB9tZaS-QeAVekSfBZX8EN1zNSPOdM0c6hLwGNgHG4VKbMFkN3kV0G5wwwxgvxBNyDrnIM1Gx4ulxLytxRl6EsGIM8oKJ5-RM8DyHqSzPyff7JdIrG4zbot9R11FN78aoo90ina3XLkT01tDaRqS2pzHh9exznc3dl18_fnJaD_Yr0rvHIOn8EGy_oLqnN33EhdcRW1pHP5o4er2-vNr1epPcZkNKrs3yJXnW6XXAV4d5QR7eX9_PP2a3nz7czGe3mZYlxEyaacMBeZsXHCBnjWyLqem0kLwoUXZYlUILVrSG6aYD1pmqajmiBG0a1KW4IO_2vsPYbLA12McURw3ebrTfKaet-vfS26VauK0qhIBKiGTw9mDg3bcRQ1QrN_o-ZVZcgiwrkFOeqHxPGe9C8NidPgBTj62p1Jo6taYOrSXdm7_jnVTHmhIAe-CP_vj5_6a_ARA8q1I</recordid><startdate>20201106</startdate><enddate>20201106</enddate><creator>Di Paola, Luisa</creator><creator>Hadi-Alijanvand, Hamid</creator><creator>Song, Xingyu</creator><creator>Hu, Guang</creator><creator>Giuliani, Alessandro</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>COVID</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8754-1541</orcidid><orcidid>https://orcid.org/0000-0001-5329-8689</orcidid></search><sort><creationdate>20201106</creationdate><title>The Discovery of a Putative Allosteric Site in the SARS-CoV‑2 Spike Protein Using an Integrated Structural/Dynamic Approach</title><author>Di Paola, Luisa ; Hadi-Alijanvand, Hamid ; Song, Xingyu ; Hu, Guang ; Giuliani, Alessandro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a481t-4c6b21e2d5721150b4d76cfa34278e4fe983a307dc0abf10fc99d2ee41acbea83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Allosteric Site - genetics</topic><topic>Angiotensin-Converting Enzyme 2</topic><topic>Betacoronavirus - genetics</topic><topic>Binding Sites</topic><topic>Coronavirus Infections - virology</topic><topic>COVID-19</topic><topic>Drug Discovery</topic><topic>Humans</topic><topic>Models, Molecular</topic><topic>Neural Networks, Computer</topic><topic>Pandemics</topic><topic>Peptidyl-Dipeptidase A - chemistry</topic><topic>Peptidyl-Dipeptidase A - metabolism</topic><topic>Pneumonia, Viral - virology</topic><topic>Protein Binding</topic><topic>SARS-CoV-2</topic><topic>Spike Glycoprotein, Coronavirus - chemistry</topic><topic>Spike Glycoprotein, Coronavirus - genetics</topic><topic>Spike Glycoprotein, Coronavirus - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Di Paola, Luisa</creatorcontrib><creatorcontrib>Hadi-Alijanvand, Hamid</creatorcontrib><creatorcontrib>Song, Xingyu</creatorcontrib><creatorcontrib>Hu, Guang</creatorcontrib><creatorcontrib>Giuliani, Alessandro</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Coronavirus Research Database</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of Proteome Research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Di Paola, Luisa</au><au>Hadi-Alijanvand, Hamid</au><au>Song, Xingyu</au><au>Hu, Guang</au><au>Giuliani, Alessandro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Discovery of a Putative Allosteric Site in the SARS-CoV‑2 Spike Protein Using an Integrated Structural/Dynamic Approach</atitle><jtitle>Journal of Proteome Research</jtitle><addtitle>J. Proteome Res</addtitle><date>2020-11-06</date><risdate>2020</risdate><volume>19</volume><issue>11</issue><spage>4576</spage><epage>4586</epage><pages>4576-4586</pages><issn>1535-3893</issn><eissn>1535-3907</eissn><abstract>SARS-CoV-2 has caused the largest pandemic of the twenty-first century (COVID-19), threatening the life and economy of all countries in the world. The identification of novel therapies and vaccines that can mitigate or control this global health threat is among the most important challenges facing biomedical sciences. To construct a long-term strategy to fight both SARS-CoV-2 and other possible future threats from coronaviruses, it is critical to understand the molecular mechanisms underlying the virus action. The viral entry and associated infectivity stems from the formation of the SARS-CoV-2 spike protein complex with angiotensin-converting enzyme 2 (ACE2). The detection of putative allosteric sites on the viral spike protein molecule can be used to elucidate the molecular pathways that can be targeted with allosteric drugs to weaken the spike-ACE2 interaction and, thus, reduce viral infectivity. In this study, we present the results of the application of different computational methods aimed at detecting allosteric sites on the SARS-CoV-2 spike protein. The adopted tools consisted of the protein contact networks (PCNs), SEPAS (Affinity by Flexibility), and perturbation response scanning (PRS) based on elastic network modes. All of these methods were applied to the ACE2 complex with both the SARS-CoV2 and SARS-CoV spike proteins. All of the adopted analyses converged toward a specific region (allosteric modulation region [AMR]), present in both complexes and predicted to act as an allosteric site modulating the binding of the spike protein with ACE2. Preliminary results on hepcidin (a molecule with strong structural and sequence with AMR) indicated an inhibitory effect on the binding affinity of the spike protein toward the ACE2 protein.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32551648</pmid><doi>10.1021/acs.jproteome.0c00273</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8754-1541</orcidid><orcidid>https://orcid.org/0000-0001-5329-8689</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1535-3893
ispartof Journal of Proteome Research, 2020-11, Vol.19 (11), p.4576-4586
issn 1535-3893
1535-3907
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7331933
source Coronavirus Research Database
subjects Allosteric Site - genetics
Angiotensin-Converting Enzyme 2
Betacoronavirus - genetics
Binding Sites
Coronavirus Infections - virology
COVID-19
Drug Discovery
Humans
Models, Molecular
Neural Networks, Computer
Pandemics
Peptidyl-Dipeptidase A - chemistry
Peptidyl-Dipeptidase A - metabolism
Pneumonia, Viral - virology
Protein Binding
SARS-CoV-2
Spike Glycoprotein, Coronavirus - chemistry
Spike Glycoprotein, Coronavirus - genetics
Spike Glycoprotein, Coronavirus - metabolism
title The Discovery of a Putative Allosteric Site in the SARS-CoV‑2 Spike Protein Using an Integrated Structural/Dynamic Approach
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A47%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_COVID&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Discovery%20of%20a%20Putative%20Allosteric%20Site%20in%20the%20SARS-CoV%E2%80%912%20Spike%20Protein%20Using%20an%20Integrated%20Structural/Dynamic%20Approach&rft.jtitle=Journal%20of%20Proteome%20Research&rft.au=Di%20Paola,%20Luisa&rft.date=2020-11-06&rft.volume=19&rft.issue=11&rft.spage=4576&rft.epage=4586&rft.pages=4576-4586&rft.issn=1535-3893&rft.eissn=1535-3907&rft_id=info:doi/10.1021/acs.jproteome.0c00273&rft_dat=%3Cproquest_COVID%3E2414891462%3C/proquest_COVID%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a481t-4c6b21e2d5721150b4d76cfa34278e4fe983a307dc0abf10fc99d2ee41acbea83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2414891462&rft_id=info:pmid/32551648&rfr_iscdi=true