Loading…
The Discovery of a Putative Allosteric Site in the SARS-CoV‑2 Spike Protein Using an Integrated Structural/Dynamic Approach
SARS-CoV-2 has caused the largest pandemic of the twenty-first century (COVID-19), threatening the life and economy of all countries in the world. The identification of novel therapies and vaccines that can mitigate or control this global health threat is among the most important challenges facing b...
Saved in:
Published in: | Journal of Proteome Research 2020-11, Vol.19 (11), p.4576-4586 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a481t-4c6b21e2d5721150b4d76cfa34278e4fe983a307dc0abf10fc99d2ee41acbea83 |
---|---|
cites | cdi_FETCH-LOGICAL-a481t-4c6b21e2d5721150b4d76cfa34278e4fe983a307dc0abf10fc99d2ee41acbea83 |
container_end_page | 4586 |
container_issue | 11 |
container_start_page | 4576 |
container_title | Journal of Proteome Research |
container_volume | 19 |
creator | Di Paola, Luisa Hadi-Alijanvand, Hamid Song, Xingyu Hu, Guang Giuliani, Alessandro |
description | SARS-CoV-2 has caused the largest pandemic of the twenty-first century (COVID-19), threatening the life and economy of all countries in the world. The identification of novel therapies and vaccines that can mitigate or control this global health threat is among the most important challenges facing biomedical sciences. To construct a long-term strategy to fight both SARS-CoV-2 and other possible future threats from coronaviruses, it is critical to understand the molecular mechanisms underlying the virus action. The viral entry and associated infectivity stems from the formation of the SARS-CoV-2 spike protein complex with angiotensin-converting enzyme 2 (ACE2). The detection of putative allosteric sites on the viral spike protein molecule can be used to elucidate the molecular pathways that can be targeted with allosteric drugs to weaken the spike-ACE2 interaction and, thus, reduce viral infectivity. In this study, we present the results of the application of different computational methods aimed at detecting allosteric sites on the SARS-CoV-2 spike protein. The adopted tools consisted of the protein contact networks (PCNs), SEPAS (Affinity by Flexibility), and perturbation response scanning (PRS) based on elastic network modes. All of these methods were applied to the ACE2 complex with both the SARS-CoV2 and SARS-CoV spike proteins. All of the adopted analyses converged toward a specific region (allosteric modulation region [AMR]), present in both complexes and predicted to act as an allosteric site modulating the binding of the spike protein with ACE2. Preliminary results on hepcidin (a molecule with strong structural and sequence with AMR) indicated an inhibitory effect on the binding affinity of the spike protein toward the ACE2 protein. |
doi_str_mv | 10.1021/acs.jproteome.0c00273 |
format | article |
fullrecord | <record><control><sourceid>proquest_COVID</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7331933</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2414891462</sourcerecordid><originalsourceid>FETCH-LOGICAL-a481t-4c6b21e2d5721150b4d76cfa34278e4fe983a307dc0abf10fc99d2ee41acbea83</originalsourceid><addsrcrecordid>eNp9kd1u1DAQhS0EoqXwCCBLXGfrsZ1NcoO02haoVImKtNxajjPZ9bIbB9tZaS-QeAVekSfBZX8EN1zNSPOdM0c6hLwGNgHG4VKbMFkN3kV0G5wwwxgvxBNyDrnIM1Gx4ulxLytxRl6EsGIM8oKJ5-RM8DyHqSzPyff7JdIrG4zbot9R11FN78aoo90ina3XLkT01tDaRqS2pzHh9exznc3dl18_fnJaD_Yr0rvHIOn8EGy_oLqnN33EhdcRW1pHP5o4er2-vNr1epPcZkNKrs3yJXnW6XXAV4d5QR7eX9_PP2a3nz7czGe3mZYlxEyaacMBeZsXHCBnjWyLqem0kLwoUXZYlUILVrSG6aYD1pmqajmiBG0a1KW4IO_2vsPYbLA12McURw3ebrTfKaet-vfS26VauK0qhIBKiGTw9mDg3bcRQ1QrN_o-ZVZcgiwrkFOeqHxPGe9C8NidPgBTj62p1Jo6taYOrSXdm7_jnVTHmhIAe-CP_vj5_6a_ARA8q1I</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2414891462</pqid></control><display><type>article</type><title>The Discovery of a Putative Allosteric Site in the SARS-CoV‑2 Spike Protein Using an Integrated Structural/Dynamic Approach</title><source>Coronavirus Research Database</source><creator>Di Paola, Luisa ; Hadi-Alijanvand, Hamid ; Song, Xingyu ; Hu, Guang ; Giuliani, Alessandro</creator><creatorcontrib>Di Paola, Luisa ; Hadi-Alijanvand, Hamid ; Song, Xingyu ; Hu, Guang ; Giuliani, Alessandro</creatorcontrib><description>SARS-CoV-2 has caused the largest pandemic of the twenty-first century (COVID-19), threatening the life and economy of all countries in the world. The identification of novel therapies and vaccines that can mitigate or control this global health threat is among the most important challenges facing biomedical sciences. To construct a long-term strategy to fight both SARS-CoV-2 and other possible future threats from coronaviruses, it is critical to understand the molecular mechanisms underlying the virus action. The viral entry and associated infectivity stems from the formation of the SARS-CoV-2 spike protein complex with angiotensin-converting enzyme 2 (ACE2). The detection of putative allosteric sites on the viral spike protein molecule can be used to elucidate the molecular pathways that can be targeted with allosteric drugs to weaken the spike-ACE2 interaction and, thus, reduce viral infectivity. In this study, we present the results of the application of different computational methods aimed at detecting allosteric sites on the SARS-CoV-2 spike protein. The adopted tools consisted of the protein contact networks (PCNs), SEPAS (Affinity by Flexibility), and perturbation response scanning (PRS) based on elastic network modes. All of these methods were applied to the ACE2 complex with both the SARS-CoV2 and SARS-CoV spike proteins. All of the adopted analyses converged toward a specific region (allosteric modulation region [AMR]), present in both complexes and predicted to act as an allosteric site modulating the binding of the spike protein with ACE2. Preliminary results on hepcidin (a molecule with strong structural and sequence with AMR) indicated an inhibitory effect on the binding affinity of the spike protein toward the ACE2 protein.</description><identifier>ISSN: 1535-3893</identifier><identifier>EISSN: 1535-3907</identifier><identifier>DOI: 10.1021/acs.jproteome.0c00273</identifier><identifier>PMID: 32551648</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Allosteric Site - genetics ; Angiotensin-Converting Enzyme 2 ; Betacoronavirus - genetics ; Binding Sites ; Coronavirus Infections - virology ; COVID-19 ; Drug Discovery ; Humans ; Models, Molecular ; Neural Networks, Computer ; Pandemics ; Peptidyl-Dipeptidase A - chemistry ; Peptidyl-Dipeptidase A - metabolism ; Pneumonia, Viral - virology ; Protein Binding ; SARS-CoV-2 ; Spike Glycoprotein, Coronavirus - chemistry ; Spike Glycoprotein, Coronavirus - genetics ; Spike Glycoprotein, Coronavirus - metabolism</subject><ispartof>Journal of Proteome Research, 2020-11, Vol.19 (11), p.4576-4586</ispartof><rights>2020. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at https://www.acs.org/content/acs/en/terms.html</rights><rights>Copyright © 2020 American Chemical Society 2020 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a481t-4c6b21e2d5721150b4d76cfa34278e4fe983a307dc0abf10fc99d2ee41acbea83</citedby><cites>FETCH-LOGICAL-a481t-4c6b21e2d5721150b4d76cfa34278e4fe983a307dc0abf10fc99d2ee41acbea83</cites><orcidid>0000-0002-8754-1541 ; 0000-0001-5329-8689</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2414891462?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,38516,43895</link.rule.ids><linktorsrc>$$Uhttps://www.proquest.com/docview/2414891462?pq-origsite=primo$$EView_record_in_ProQuest$$FView_record_in_$$GProQuest</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32551648$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Di Paola, Luisa</creatorcontrib><creatorcontrib>Hadi-Alijanvand, Hamid</creatorcontrib><creatorcontrib>Song, Xingyu</creatorcontrib><creatorcontrib>Hu, Guang</creatorcontrib><creatorcontrib>Giuliani, Alessandro</creatorcontrib><title>The Discovery of a Putative Allosteric Site in the SARS-CoV‑2 Spike Protein Using an Integrated Structural/Dynamic Approach</title><title>Journal of Proteome Research</title><addtitle>J. Proteome Res</addtitle><description>SARS-CoV-2 has caused the largest pandemic of the twenty-first century (COVID-19), threatening the life and economy of all countries in the world. The identification of novel therapies and vaccines that can mitigate or control this global health threat is among the most important challenges facing biomedical sciences. To construct a long-term strategy to fight both SARS-CoV-2 and other possible future threats from coronaviruses, it is critical to understand the molecular mechanisms underlying the virus action. The viral entry and associated infectivity stems from the formation of the SARS-CoV-2 spike protein complex with angiotensin-converting enzyme 2 (ACE2). The detection of putative allosteric sites on the viral spike protein molecule can be used to elucidate the molecular pathways that can be targeted with allosteric drugs to weaken the spike-ACE2 interaction and, thus, reduce viral infectivity. In this study, we present the results of the application of different computational methods aimed at detecting allosteric sites on the SARS-CoV-2 spike protein. The adopted tools consisted of the protein contact networks (PCNs), SEPAS (Affinity by Flexibility), and perturbation response scanning (PRS) based on elastic network modes. All of these methods were applied to the ACE2 complex with both the SARS-CoV2 and SARS-CoV spike proteins. All of the adopted analyses converged toward a specific region (allosteric modulation region [AMR]), present in both complexes and predicted to act as an allosteric site modulating the binding of the spike protein with ACE2. Preliminary results on hepcidin (a molecule with strong structural and sequence with AMR) indicated an inhibitory effect on the binding affinity of the spike protein toward the ACE2 protein.</description><subject>Allosteric Site - genetics</subject><subject>Angiotensin-Converting Enzyme 2</subject><subject>Betacoronavirus - genetics</subject><subject>Binding Sites</subject><subject>Coronavirus Infections - virology</subject><subject>COVID-19</subject><subject>Drug Discovery</subject><subject>Humans</subject><subject>Models, Molecular</subject><subject>Neural Networks, Computer</subject><subject>Pandemics</subject><subject>Peptidyl-Dipeptidase A - chemistry</subject><subject>Peptidyl-Dipeptidase A - metabolism</subject><subject>Pneumonia, Viral - virology</subject><subject>Protein Binding</subject><subject>SARS-CoV-2</subject><subject>Spike Glycoprotein, Coronavirus - chemistry</subject><subject>Spike Glycoprotein, Coronavirus - genetics</subject><subject>Spike Glycoprotein, Coronavirus - metabolism</subject><issn>1535-3893</issn><issn>1535-3907</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><recordid>eNp9kd1u1DAQhS0EoqXwCCBLXGfrsZ1NcoO02haoVImKtNxajjPZ9bIbB9tZaS-QeAVekSfBZX8EN1zNSPOdM0c6hLwGNgHG4VKbMFkN3kV0G5wwwxgvxBNyDrnIM1Gx4ulxLytxRl6EsGIM8oKJ5-RM8DyHqSzPyff7JdIrG4zbot9R11FN78aoo90ina3XLkT01tDaRqS2pzHh9exznc3dl18_fnJaD_Yr0rvHIOn8EGy_oLqnN33EhdcRW1pHP5o4er2-vNr1epPcZkNKrs3yJXnW6XXAV4d5QR7eX9_PP2a3nz7czGe3mZYlxEyaacMBeZsXHCBnjWyLqem0kLwoUXZYlUILVrSG6aYD1pmqajmiBG0a1KW4IO_2vsPYbLA12McURw3ebrTfKaet-vfS26VauK0qhIBKiGTw9mDg3bcRQ1QrN_o-ZVZcgiwrkFOeqHxPGe9C8NidPgBTj62p1Jo6taYOrSXdm7_jnVTHmhIAe-CP_vj5_6a_ARA8q1I</recordid><startdate>20201106</startdate><enddate>20201106</enddate><creator>Di Paola, Luisa</creator><creator>Hadi-Alijanvand, Hamid</creator><creator>Song, Xingyu</creator><creator>Hu, Guang</creator><creator>Giuliani, Alessandro</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>COVID</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8754-1541</orcidid><orcidid>https://orcid.org/0000-0001-5329-8689</orcidid></search><sort><creationdate>20201106</creationdate><title>The Discovery of a Putative Allosteric Site in the SARS-CoV‑2 Spike Protein Using an Integrated Structural/Dynamic Approach</title><author>Di Paola, Luisa ; Hadi-Alijanvand, Hamid ; Song, Xingyu ; Hu, Guang ; Giuliani, Alessandro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a481t-4c6b21e2d5721150b4d76cfa34278e4fe983a307dc0abf10fc99d2ee41acbea83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Allosteric Site - genetics</topic><topic>Angiotensin-Converting Enzyme 2</topic><topic>Betacoronavirus - genetics</topic><topic>Binding Sites</topic><topic>Coronavirus Infections - virology</topic><topic>COVID-19</topic><topic>Drug Discovery</topic><topic>Humans</topic><topic>Models, Molecular</topic><topic>Neural Networks, Computer</topic><topic>Pandemics</topic><topic>Peptidyl-Dipeptidase A - chemistry</topic><topic>Peptidyl-Dipeptidase A - metabolism</topic><topic>Pneumonia, Viral - virology</topic><topic>Protein Binding</topic><topic>SARS-CoV-2</topic><topic>Spike Glycoprotein, Coronavirus - chemistry</topic><topic>Spike Glycoprotein, Coronavirus - genetics</topic><topic>Spike Glycoprotein, Coronavirus - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Di Paola, Luisa</creatorcontrib><creatorcontrib>Hadi-Alijanvand, Hamid</creatorcontrib><creatorcontrib>Song, Xingyu</creatorcontrib><creatorcontrib>Hu, Guang</creatorcontrib><creatorcontrib>Giuliani, Alessandro</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Coronavirus Research Database</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of Proteome Research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Di Paola, Luisa</au><au>Hadi-Alijanvand, Hamid</au><au>Song, Xingyu</au><au>Hu, Guang</au><au>Giuliani, Alessandro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Discovery of a Putative Allosteric Site in the SARS-CoV‑2 Spike Protein Using an Integrated Structural/Dynamic Approach</atitle><jtitle>Journal of Proteome Research</jtitle><addtitle>J. Proteome Res</addtitle><date>2020-11-06</date><risdate>2020</risdate><volume>19</volume><issue>11</issue><spage>4576</spage><epage>4586</epage><pages>4576-4586</pages><issn>1535-3893</issn><eissn>1535-3907</eissn><abstract>SARS-CoV-2 has caused the largest pandemic of the twenty-first century (COVID-19), threatening the life and economy of all countries in the world. The identification of novel therapies and vaccines that can mitigate or control this global health threat is among the most important challenges facing biomedical sciences. To construct a long-term strategy to fight both SARS-CoV-2 and other possible future threats from coronaviruses, it is critical to understand the molecular mechanisms underlying the virus action. The viral entry and associated infectivity stems from the formation of the SARS-CoV-2 spike protein complex with angiotensin-converting enzyme 2 (ACE2). The detection of putative allosteric sites on the viral spike protein molecule can be used to elucidate the molecular pathways that can be targeted with allosteric drugs to weaken the spike-ACE2 interaction and, thus, reduce viral infectivity. In this study, we present the results of the application of different computational methods aimed at detecting allosteric sites on the SARS-CoV-2 spike protein. The adopted tools consisted of the protein contact networks (PCNs), SEPAS (Affinity by Flexibility), and perturbation response scanning (PRS) based on elastic network modes. All of these methods were applied to the ACE2 complex with both the SARS-CoV2 and SARS-CoV spike proteins. All of the adopted analyses converged toward a specific region (allosteric modulation region [AMR]), present in both complexes and predicted to act as an allosteric site modulating the binding of the spike protein with ACE2. Preliminary results on hepcidin (a molecule with strong structural and sequence with AMR) indicated an inhibitory effect on the binding affinity of the spike protein toward the ACE2 protein.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32551648</pmid><doi>10.1021/acs.jproteome.0c00273</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8754-1541</orcidid><orcidid>https://orcid.org/0000-0001-5329-8689</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1535-3893 |
ispartof | Journal of Proteome Research, 2020-11, Vol.19 (11), p.4576-4586 |
issn | 1535-3893 1535-3907 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7331933 |
source | Coronavirus Research Database |
subjects | Allosteric Site - genetics Angiotensin-Converting Enzyme 2 Betacoronavirus - genetics Binding Sites Coronavirus Infections - virology COVID-19 Drug Discovery Humans Models, Molecular Neural Networks, Computer Pandemics Peptidyl-Dipeptidase A - chemistry Peptidyl-Dipeptidase A - metabolism Pneumonia, Viral - virology Protein Binding SARS-CoV-2 Spike Glycoprotein, Coronavirus - chemistry Spike Glycoprotein, Coronavirus - genetics Spike Glycoprotein, Coronavirus - metabolism |
title | The Discovery of a Putative Allosteric Site in the SARS-CoV‑2 Spike Protein Using an Integrated Structural/Dynamic Approach |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A47%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_COVID&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Discovery%20of%20a%20Putative%20Allosteric%20Site%20in%20the%20SARS-CoV%E2%80%912%20Spike%20Protein%20Using%20an%20Integrated%20Structural/Dynamic%20Approach&rft.jtitle=Journal%20of%20Proteome%20Research&rft.au=Di%20Paola,%20Luisa&rft.date=2020-11-06&rft.volume=19&rft.issue=11&rft.spage=4576&rft.epage=4586&rft.pages=4576-4586&rft.issn=1535-3893&rft.eissn=1535-3907&rft_id=info:doi/10.1021/acs.jproteome.0c00273&rft_dat=%3Cproquest_COVID%3E2414891462%3C/proquest_COVID%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a481t-4c6b21e2d5721150b4d76cfa34278e4fe983a307dc0abf10fc99d2ee41acbea83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2414891462&rft_id=info:pmid/32551648&rfr_iscdi=true |