Loading…

Lineage dynamics of the endosymbiotic cell type in the soft coral Xenia

Many corals harbour symbiotic dinoflagellate algae. The algae live inside coral cells in a specialized membrane compartment known as the symbiosome, which shares the photosynthetically fixed carbon with coral host cells while host cells provide inorganic carbon to the algae for photosynthesis 1 . Th...

Full description

Saved in:
Bibliographic Details
Published in:Nature (London) 2020-06, Vol.582 (7813), p.534-538
Main Authors: Hu, Minjie, Zheng, Xiaobin, Fan, Chen-Ming, Zheng, Yixian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c6907-c91e170ca316eae1529cb9f8a869c2508624673f283b16f92b9a5586f5d0c2f43
cites cdi_FETCH-LOGICAL-c6907-c91e170ca316eae1529cb9f8a869c2508624673f283b16f92b9a5586f5d0c2f43
container_end_page 538
container_issue 7813
container_start_page 534
container_title Nature (London)
container_volume 582
creator Hu, Minjie
Zheng, Xiaobin
Fan, Chen-Ming
Zheng, Yixian
description Many corals harbour symbiotic dinoflagellate algae. The algae live inside coral cells in a specialized membrane compartment known as the symbiosome, which shares the photosynthetically fixed carbon with coral host cells while host cells provide inorganic carbon to the algae for photosynthesis 1 . This endosymbiosis—which is critical for the maintenance of coral reef ecosystems—is increasingly threatened by environmental stressors that lead to coral bleaching (that is, the disruption of endosymbiosis), which in turn leads to coral death and the degradation of marine ecosystems 2 . The molecular pathways that orchestrate the recognition, uptake and maintenance of algae in coral cells remain poorly understood. Here we report the chromosome-level genome assembly of a Xenia species of fast-growing soft coral 3 , and use this species as a model to investigate coral–alga endosymbiosis. Single-cell RNA sequencing identified 16 cell clusters, including gastrodermal cells and cnidocytes, in Xenia sp. We identified the endosymbiotic cell type, which expresses a distinct set of genes that are implicated in the recognition, phagocytosis and/or endocytosis, and maintenance of algae, as well as in the immune modulation of host coral cells. By coupling Xenia sp. regeneration and single-cell RNA sequencing, we observed a dynamic lineage progression of the endosymbiotic cells. The conserved genes associated with endosymbiosis that are reported here may help to reveal common principles by which different corals take up or lose their endosymbionts. Single-cell RNA sequencing identifies the pattern of gene expression during lineage progression in endosymbiotic cells of the fast-growing soft coral Xenia , revealing principles that underlie uptake and maintenance of endosymbionts by this coral.
doi_str_mv 10.1038/s41586-020-2385-7
format article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7332420</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A627621641</galeid><sourcerecordid>A627621641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6907-c91e170ca316eae1529cb9f8a869c2508624673f283b16f92b9a5586f5d0c2f43</originalsourceid><addsrcrecordid>eNp1kl9rFDEUxYModrv6AXyRQV8UmZr_k3kRlkVrYVHQir6FTPZmmrKbbCez0v32ZtzadmRLHgK5v3tyL-cg9ILgE4KZep84EUqWmOKSMiXK6hGaEF7JkktVPUYTjKkqsWLyCB2ndIkxFqTiT9ERo0IILvgEnS58ANNCsdwFs_Y2FdEV_QUUEJYx7daNj723hYXVquh3Gyh8-FtO0fWFjZ1ZFb8gePMMPXFmleD5zT1FPz59PJ9_LhdfT8_ms0VpZY2r0tYESIWtYUSCASJobZvaKaNkbanASlIuK-aoYg2RrqZNbUTe0YklttRxNkUf9rqbbbOGpYXQ5xn0pvNr0-10NF6PK8Ff6Db-1hVjlFOcBd7cCHTxagup12ufhvVMgLhNmvJhKEWYyOjr_9DLuO1CXi9TlNQ1VjW9o1qzAu2Di_lfO4jqmaSVpERykqnyANVCgDxkDOB8fh7xrw7wduOv9H3o5ACUzxKylQdV344aMtPDdd-abUr67Pu3MfvuYXZ2_nP-ZUyTPW27mFIH7tYSgvUQVr0Pq85h1UNYsyFT9PK-l7cd_9KZAboHUi6FFro7Ax5W_QMToe5O</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2421990892</pqid></control><display><type>article</type><title>Lineage dynamics of the endosymbiotic cell type in the soft coral Xenia</title><source>Nature Journals Online</source><creator>Hu, Minjie ; Zheng, Xiaobin ; Fan, Chen-Ming ; Zheng, Yixian</creator><creatorcontrib>Hu, Minjie ; Zheng, Xiaobin ; Fan, Chen-Ming ; Zheng, Yixian</creatorcontrib><description>Many corals harbour symbiotic dinoflagellate algae. The algae live inside coral cells in a specialized membrane compartment known as the symbiosome, which shares the photosynthetically fixed carbon with coral host cells while host cells provide inorganic carbon to the algae for photosynthesis 1 . This endosymbiosis—which is critical for the maintenance of coral reef ecosystems—is increasingly threatened by environmental stressors that lead to coral bleaching (that is, the disruption of endosymbiosis), which in turn leads to coral death and the degradation of marine ecosystems 2 . The molecular pathways that orchestrate the recognition, uptake and maintenance of algae in coral cells remain poorly understood. Here we report the chromosome-level genome assembly of a Xenia species of fast-growing soft coral 3 , and use this species as a model to investigate coral–alga endosymbiosis. Single-cell RNA sequencing identified 16 cell clusters, including gastrodermal cells and cnidocytes, in Xenia sp. We identified the endosymbiotic cell type, which expresses a distinct set of genes that are implicated in the recognition, phagocytosis and/or endocytosis, and maintenance of algae, as well as in the immune modulation of host coral cells. By coupling Xenia sp. regeneration and single-cell RNA sequencing, we observed a dynamic lineage progression of the endosymbiotic cells. The conserved genes associated with endosymbiosis that are reported here may help to reveal common principles by which different corals take up or lose their endosymbionts. Single-cell RNA sequencing identifies the pattern of gene expression during lineage progression in endosymbiotic cells of the fast-growing soft coral Xenia , revealing principles that underlie uptake and maintenance of endosymbionts by this coral.</description><identifier>ISSN: 0028-0836</identifier><identifier>ISSN: 1476-4687</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-020-2385-7</identifier><identifier>PMID: 32555454</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>14/1 ; 14/19 ; 38/23 ; 38/32 ; 38/71 ; 38/91 ; 45/90 ; 631/337/2019 ; 631/80 ; 96/31 ; Algae ; Analysis ; Animals ; Anthozoa - cytology ; Anthozoa - genetics ; Anthozoa - immunology ; Anthozoa - metabolism ; Carbon ; Carbon - metabolism ; Cell Differentiation - genetics ; Cell Lineage - genetics ; Chromosomes ; Coral bleaching ; Coral reef ecosystems ; Coral Reefs ; Corals ; Coupling (molecular) ; Dinoflagellates ; Dinoflagellida - immunology ; Dinoflagellida - metabolism ; Dinoflagellida - physiology ; Ecosystem ; Ecosystem degradation ; Endocytosis ; Endosymbionts ; Endosymbiosis ; Environmental stress ; Gene sequencing ; Genes ; Genetic aspects ; Genome - genetics ; Genomes ; Genomics ; Growth ; Harbors ; Humanities and Social Sciences ; Identification and classification ; Immunomodulation ; Inorganic carbon ; Ligands ; Maintenance ; Marine ecosystems ; Microorganisms ; multidisciplinary ; Natural history ; Phagocytosis ; Photosynthesis ; Proteins ; Recognition ; Regeneration ; Ribonucleic acid ; RNA ; RNA sequencing ; RNA-Seq ; Science ; Science (multidisciplinary) ; Single-Cell Analysis ; Soft corals ; Symbiosis - genetics ; Symbiosis - immunology ; Transcriptome ; Unicellular organisms</subject><ispartof>Nature (London), 2020-06, Vol.582 (7813), p.534-538</ispartof><rights>The Author(s) 2020</rights><rights>COPYRIGHT 2020 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jun 25, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6907-c91e170ca316eae1529cb9f8a869c2508624673f283b16f92b9a5586f5d0c2f43</citedby><cites>FETCH-LOGICAL-c6907-c91e170ca316eae1529cb9f8a869c2508624673f283b16f92b9a5586f5d0c2f43</cites><orcidid>0000-0003-3211-6617 ; 0000-0002-8758-0567 ; 0000-0002-1992-4014</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32555454$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hu, Minjie</creatorcontrib><creatorcontrib>Zheng, Xiaobin</creatorcontrib><creatorcontrib>Fan, Chen-Ming</creatorcontrib><creatorcontrib>Zheng, Yixian</creatorcontrib><title>Lineage dynamics of the endosymbiotic cell type in the soft coral Xenia</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Many corals harbour symbiotic dinoflagellate algae. The algae live inside coral cells in a specialized membrane compartment known as the symbiosome, which shares the photosynthetically fixed carbon with coral host cells while host cells provide inorganic carbon to the algae for photosynthesis 1 . This endosymbiosis—which is critical for the maintenance of coral reef ecosystems—is increasingly threatened by environmental stressors that lead to coral bleaching (that is, the disruption of endosymbiosis), which in turn leads to coral death and the degradation of marine ecosystems 2 . The molecular pathways that orchestrate the recognition, uptake and maintenance of algae in coral cells remain poorly understood. Here we report the chromosome-level genome assembly of a Xenia species of fast-growing soft coral 3 , and use this species as a model to investigate coral–alga endosymbiosis. Single-cell RNA sequencing identified 16 cell clusters, including gastrodermal cells and cnidocytes, in Xenia sp. We identified the endosymbiotic cell type, which expresses a distinct set of genes that are implicated in the recognition, phagocytosis and/or endocytosis, and maintenance of algae, as well as in the immune modulation of host coral cells. By coupling Xenia sp. regeneration and single-cell RNA sequencing, we observed a dynamic lineage progression of the endosymbiotic cells. The conserved genes associated with endosymbiosis that are reported here may help to reveal common principles by which different corals take up or lose their endosymbionts. Single-cell RNA sequencing identifies the pattern of gene expression during lineage progression in endosymbiotic cells of the fast-growing soft coral Xenia , revealing principles that underlie uptake and maintenance of endosymbionts by this coral.</description><subject>14/1</subject><subject>14/19</subject><subject>38/23</subject><subject>38/32</subject><subject>38/71</subject><subject>38/91</subject><subject>45/90</subject><subject>631/337/2019</subject><subject>631/80</subject><subject>96/31</subject><subject>Algae</subject><subject>Analysis</subject><subject>Animals</subject><subject>Anthozoa - cytology</subject><subject>Anthozoa - genetics</subject><subject>Anthozoa - immunology</subject><subject>Anthozoa - metabolism</subject><subject>Carbon</subject><subject>Carbon - metabolism</subject><subject>Cell Differentiation - genetics</subject><subject>Cell Lineage - genetics</subject><subject>Chromosomes</subject><subject>Coral bleaching</subject><subject>Coral reef ecosystems</subject><subject>Coral Reefs</subject><subject>Corals</subject><subject>Coupling (molecular)</subject><subject>Dinoflagellates</subject><subject>Dinoflagellida - immunology</subject><subject>Dinoflagellida - metabolism</subject><subject>Dinoflagellida - physiology</subject><subject>Ecosystem</subject><subject>Ecosystem degradation</subject><subject>Endocytosis</subject><subject>Endosymbionts</subject><subject>Endosymbiosis</subject><subject>Environmental stress</subject><subject>Gene sequencing</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genome - genetics</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Growth</subject><subject>Harbors</subject><subject>Humanities and Social Sciences</subject><subject>Identification and classification</subject><subject>Immunomodulation</subject><subject>Inorganic carbon</subject><subject>Ligands</subject><subject>Maintenance</subject><subject>Marine ecosystems</subject><subject>Microorganisms</subject><subject>multidisciplinary</subject><subject>Natural history</subject><subject>Phagocytosis</subject><subject>Photosynthesis</subject><subject>Proteins</subject><subject>Recognition</subject><subject>Regeneration</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA sequencing</subject><subject>RNA-Seq</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Single-Cell Analysis</subject><subject>Soft corals</subject><subject>Symbiosis - genetics</subject><subject>Symbiosis - immunology</subject><subject>Transcriptome</subject><subject>Unicellular organisms</subject><issn>0028-0836</issn><issn>1476-4687</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kl9rFDEUxYModrv6AXyRQV8UmZr_k3kRlkVrYVHQir6FTPZmmrKbbCez0v32ZtzadmRLHgK5v3tyL-cg9ILgE4KZep84EUqWmOKSMiXK6hGaEF7JkktVPUYTjKkqsWLyCB2ndIkxFqTiT9ERo0IILvgEnS58ANNCsdwFs_Y2FdEV_QUUEJYx7daNj723hYXVquh3Gyh8-FtO0fWFjZ1ZFb8gePMMPXFmleD5zT1FPz59PJ9_LhdfT8_ms0VpZY2r0tYESIWtYUSCASJobZvaKaNkbanASlIuK-aoYg2RrqZNbUTe0YklttRxNkUf9rqbbbOGpYXQ5xn0pvNr0-10NF6PK8Ff6Db-1hVjlFOcBd7cCHTxagup12ufhvVMgLhNmvJhKEWYyOjr_9DLuO1CXi9TlNQ1VjW9o1qzAu2Di_lfO4jqmaSVpERykqnyANVCgDxkDOB8fh7xrw7wduOv9H3o5ACUzxKylQdV344aMtPDdd-abUr67Pu3MfvuYXZ2_nP-ZUyTPW27mFIH7tYSgvUQVr0Pq85h1UNYsyFT9PK-l7cd_9KZAboHUi6FFro7Ax5W_QMToe5O</recordid><startdate>20200625</startdate><enddate>20200625</enddate><creator>Hu, Minjie</creator><creator>Zheng, Xiaobin</creator><creator>Fan, Chen-Ming</creator><creator>Zheng, Yixian</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3211-6617</orcidid><orcidid>https://orcid.org/0000-0002-8758-0567</orcidid><orcidid>https://orcid.org/0000-0002-1992-4014</orcidid></search><sort><creationdate>20200625</creationdate><title>Lineage dynamics of the endosymbiotic cell type in the soft coral Xenia</title><author>Hu, Minjie ; Zheng, Xiaobin ; Fan, Chen-Ming ; Zheng, Yixian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6907-c91e170ca316eae1529cb9f8a869c2508624673f283b16f92b9a5586f5d0c2f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>14/1</topic><topic>14/19</topic><topic>38/23</topic><topic>38/32</topic><topic>38/71</topic><topic>38/91</topic><topic>45/90</topic><topic>631/337/2019</topic><topic>631/80</topic><topic>96/31</topic><topic>Algae</topic><topic>Analysis</topic><topic>Animals</topic><topic>Anthozoa - cytology</topic><topic>Anthozoa - genetics</topic><topic>Anthozoa - immunology</topic><topic>Anthozoa - metabolism</topic><topic>Carbon</topic><topic>Carbon - metabolism</topic><topic>Cell Differentiation - genetics</topic><topic>Cell Lineage - genetics</topic><topic>Chromosomes</topic><topic>Coral bleaching</topic><topic>Coral reef ecosystems</topic><topic>Coral Reefs</topic><topic>Corals</topic><topic>Coupling (molecular)</topic><topic>Dinoflagellates</topic><topic>Dinoflagellida - immunology</topic><topic>Dinoflagellida - metabolism</topic><topic>Dinoflagellida - physiology</topic><topic>Ecosystem</topic><topic>Ecosystem degradation</topic><topic>Endocytosis</topic><topic>Endosymbionts</topic><topic>Endosymbiosis</topic><topic>Environmental stress</topic><topic>Gene sequencing</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genome - genetics</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Growth</topic><topic>Harbors</topic><topic>Humanities and Social Sciences</topic><topic>Identification and classification</topic><topic>Immunomodulation</topic><topic>Inorganic carbon</topic><topic>Ligands</topic><topic>Maintenance</topic><topic>Marine ecosystems</topic><topic>Microorganisms</topic><topic>multidisciplinary</topic><topic>Natural history</topic><topic>Phagocytosis</topic><topic>Photosynthesis</topic><topic>Proteins</topic><topic>Recognition</topic><topic>Regeneration</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA sequencing</topic><topic>RNA-Seq</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Single-Cell Analysis</topic><topic>Soft corals</topic><topic>Symbiosis - genetics</topic><topic>Symbiosis - immunology</topic><topic>Transcriptome</topic><topic>Unicellular organisms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Minjie</creatorcontrib><creatorcontrib>Zheng, Xiaobin</creatorcontrib><creatorcontrib>Fan, Chen-Ming</creatorcontrib><creatorcontrib>Zheng, Yixian</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Minjie</au><au>Zheng, Xiaobin</au><au>Fan, Chen-Ming</au><au>Zheng, Yixian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lineage dynamics of the endosymbiotic cell type in the soft coral Xenia</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2020-06-25</date><risdate>2020</risdate><volume>582</volume><issue>7813</issue><spage>534</spage><epage>538</epage><pages>534-538</pages><issn>0028-0836</issn><issn>1476-4687</issn><eissn>1476-4687</eissn><abstract>Many corals harbour symbiotic dinoflagellate algae. The algae live inside coral cells in a specialized membrane compartment known as the symbiosome, which shares the photosynthetically fixed carbon with coral host cells while host cells provide inorganic carbon to the algae for photosynthesis 1 . This endosymbiosis—which is critical for the maintenance of coral reef ecosystems—is increasingly threatened by environmental stressors that lead to coral bleaching (that is, the disruption of endosymbiosis), which in turn leads to coral death and the degradation of marine ecosystems 2 . The molecular pathways that orchestrate the recognition, uptake and maintenance of algae in coral cells remain poorly understood. Here we report the chromosome-level genome assembly of a Xenia species of fast-growing soft coral 3 , and use this species as a model to investigate coral–alga endosymbiosis. Single-cell RNA sequencing identified 16 cell clusters, including gastrodermal cells and cnidocytes, in Xenia sp. We identified the endosymbiotic cell type, which expresses a distinct set of genes that are implicated in the recognition, phagocytosis and/or endocytosis, and maintenance of algae, as well as in the immune modulation of host coral cells. By coupling Xenia sp. regeneration and single-cell RNA sequencing, we observed a dynamic lineage progression of the endosymbiotic cells. The conserved genes associated with endosymbiosis that are reported here may help to reveal common principles by which different corals take up or lose their endosymbionts. Single-cell RNA sequencing identifies the pattern of gene expression during lineage progression in endosymbiotic cells of the fast-growing soft coral Xenia , revealing principles that underlie uptake and maintenance of endosymbionts by this coral.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32555454</pmid><doi>10.1038/s41586-020-2385-7</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-3211-6617</orcidid><orcidid>https://orcid.org/0000-0002-8758-0567</orcidid><orcidid>https://orcid.org/0000-0002-1992-4014</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2020-06, Vol.582 (7813), p.534-538
issn 0028-0836
1476-4687
1476-4687
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7332420
source Nature Journals Online
subjects 14/1
14/19
38/23
38/32
38/71
38/91
45/90
631/337/2019
631/80
96/31
Algae
Analysis
Animals
Anthozoa - cytology
Anthozoa - genetics
Anthozoa - immunology
Anthozoa - metabolism
Carbon
Carbon - metabolism
Cell Differentiation - genetics
Cell Lineage - genetics
Chromosomes
Coral bleaching
Coral reef ecosystems
Coral Reefs
Corals
Coupling (molecular)
Dinoflagellates
Dinoflagellida - immunology
Dinoflagellida - metabolism
Dinoflagellida - physiology
Ecosystem
Ecosystem degradation
Endocytosis
Endosymbionts
Endosymbiosis
Environmental stress
Gene sequencing
Genes
Genetic aspects
Genome - genetics
Genomes
Genomics
Growth
Harbors
Humanities and Social Sciences
Identification and classification
Immunomodulation
Inorganic carbon
Ligands
Maintenance
Marine ecosystems
Microorganisms
multidisciplinary
Natural history
Phagocytosis
Photosynthesis
Proteins
Recognition
Regeneration
Ribonucleic acid
RNA
RNA sequencing
RNA-Seq
Science
Science (multidisciplinary)
Single-Cell Analysis
Soft corals
Symbiosis - genetics
Symbiosis - immunology
Transcriptome
Unicellular organisms
title Lineage dynamics of the endosymbiotic cell type in the soft coral Xenia
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T20%3A12%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lineage%20dynamics%20of%20the%20endosymbiotic%20cell%20type%20in%20the%20soft%20coral%20Xenia&rft.jtitle=Nature%20(London)&rft.au=Hu,%20Minjie&rft.date=2020-06-25&rft.volume=582&rft.issue=7813&rft.spage=534&rft.epage=538&rft.pages=534-538&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-020-2385-7&rft_dat=%3Cgale_pubme%3EA627621641%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c6907-c91e170ca316eae1529cb9f8a869c2508624673f283b16f92b9a5586f5d0c2f43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2421990892&rft_id=info:pmid/32555454&rft_galeid=A627621641&rfr_iscdi=true