Loading…

Dredging Activities Carried Out in a Brazilian Estuary Affect Mercury Levels in Swimming Crabs

(1) Although suffers from intense pollution inputs, Guanabara Bay, the most socioeconomically and environmentally important estuary in Rio de Janeiro, Brazil, is still home to a diverse fauna, including several fish and crab species consumed by humans. The bay presents high sedimentation rates and s...

Full description

Saved in:
Bibliographic Details
Published in:International journal of environmental research and public health 2020-06, Vol.17 (12), p.4396
Main Authors: Rodrigues, Paloma de Almeida, Ferrari, Rafaela Gomes, Hauser-Davis, Rachel Ann, Neves dos Santos, Luciano, Conte-Junior, Carlos Adam
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:(1) Although suffers from intense pollution inputs, Guanabara Bay, the most socioeconomically and environmentally important estuary in Rio de Janeiro, Brazil, is still home to a diverse fauna, including several fish and crab species consumed by humans. The bay presents high sedimentation rates and sediment contamination, further aggravated by dredging processes carried out in recent years. In this context, this study aimed to verify the effect of the dredging process on total mercury (THg) concentrations at Guanabara Bay through swimming crab assessments sampled before (2016), during (2017), and after (2018) the dredging process, and mainly, if the detected concentrations can be harmful to consumer health; (2) Methods: Swimming crab samplings were carried out at the same time and sampling points in 2016, 2017 and 2018 and the total Hg was determined using a Direct Mercury Analyzer (DMA-80, Milestone, Bergamo, Italy); (3) Results: Increased Hg concentrations were observed during the dredging process, decreasing to lower values, close to the initial concentrations, at the end of the process. Some of the investigated abiotic factors favor Hg dynamics in the aquatic environment, while others were positively altered at some of the assessed sampling areas at the end of the dredging process; (4) Conclusions: Although crab Hg levels were below maximum permissible limits for human consumption, it is important to note that these animals are significantly consumed around Guanabara Bay, which may lead to public health issues in the long term.
ISSN:1660-4601
1661-7827
1660-4601
DOI:10.3390/ijerph17124396