Loading…
PhISCS-BnB: a fast branch and bound algorithm for the perfect tumor phylogeny reconstruction problem
Abstract Motivation Recent advances in single-cell sequencing (SCS) offer an unprecedented insight into tumor emergence and evolution. Principled approaches to tumor phylogeny reconstruction via SCS data are typically based on general computational methods for solving an integer linear program, or a...
Saved in:
Published in: | Bioinformatics (Oxford, England) England), 2020-07, Vol.36 (Supplement_1), p.i169-i176 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c456t-f86d5168cfdad13070fe1078ba3433d6bba334a6287fd845bfb115a94602b7fd3 |
---|---|
cites | cdi_FETCH-LOGICAL-c456t-f86d5168cfdad13070fe1078ba3433d6bba334a6287fd845bfb115a94602b7fd3 |
container_end_page | i176 |
container_issue | Supplement_1 |
container_start_page | i169 |
container_title | Bioinformatics (Oxford, England) |
container_volume | 36 |
creator | Sadeqi Azer, Erfan Rashidi Mehrabadi, Farid Malikić, Salem Li, Xuan Cindy Bartok, Osnat Litchfield, Kevin Levy, Ronen Samuels, Yardena Schäffer, Alejandro A Gertz, E Michael Day, Chi-Ping Pérez-Guijarro, Eva Marie, Kerrie Lee, Maxwell P Merlino, Glenn Ergun, Funda Sahinalp, S Cenk |
description | Abstract
Motivation
Recent advances in single-cell sequencing (SCS) offer an unprecedented insight into tumor emergence and evolution. Principled approaches to tumor phylogeny reconstruction via SCS data are typically based on general computational methods for solving an integer linear program, or a constraint satisfaction program, which, although guaranteeing convergence to the most likely solution, are very slow. Others based on Monte Carlo Markov Chain or alternative heuristics not only offer no such guarantee, but also are not faster in practice. As a result, novel methods that can scale up to handle the size and noise characteristics of emerging SCS data are highly desirable to fully utilize this technology.
Results
We introduce PhISCS-BnB (phylogeny inference using SCS via branch and bound), a branch and bound algorithm to compute the most likely perfect phylogeny on an input genotype matrix extracted from an SCS dataset. PhISCS-BnB not only offers an optimality guarantee, but is also 10–100 times faster than the best available methods on simulated tumor SCS data. We also applied PhISCS-BnB on a recently published large melanoma dataset derived from the sublineages of a cell line involving 20 clones with 2367 mutations, which returned the optimal tumor phylogeny in |
doi_str_mv | 10.1093/bioinformatics/btaa464 |
format | article |
fullrecord | <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7355310</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bioinformatics/btaa464</oup_id><sourcerecordid>2423537190</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-f86d5168cfdad13070fe1078ba3433d6bba334a6287fd845bfb115a94602b7fd3</originalsourceid><addsrcrecordid>eNqNUU1v1DAQtRCIfsBfqHzkEmrHH8lyQKIroJUqgVQ4W2PH3hgldrCdSvvvcbXLit64zIxm3rw3mofQFSXvKdmwa-2jDy6mGYo3-VoXAC75C3ROmewa3lP68lQTdoYucv5FCBFEyNfojLVSdEz052j4Pt49bB-am3DzAQN2kAvWCYIZMYQB67jWCNMuJl_GGVdFXEaLF5ucNQWXda6dZdxPcWfDHidrYsglrab4GPCSop7s_Aa9cjBl-_aYL9HPL59_bG-b-29f77af7hvDhSyN6-UgqOyNG2CgjHTEWUq6XgPjjA1S14JxkG3fuaHnQjtNqYANl6TVtcUu0ccD77Lq2Q7GhpJgUkvyM6S9iuDV80nwo9rFR1V_IRglleDdkSDF36vNRc0-GztNEGxcs2p5ywTr6OYJKg9Qk2LOybqTDCXqySL13CJ1tKguXv175GntrycVQA-AuC7_S_oHloOnHg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2423537190</pqid></control><display><type>article</type><title>PhISCS-BnB: a fast branch and bound algorithm for the perfect tumor phylogeny reconstruction problem</title><source>Oxford University Press Open Access</source><creator>Sadeqi Azer, Erfan ; Rashidi Mehrabadi, Farid ; Malikić, Salem ; Li, Xuan Cindy ; Bartok, Osnat ; Litchfield, Kevin ; Levy, Ronen ; Samuels, Yardena ; Schäffer, Alejandro A ; Gertz, E Michael ; Day, Chi-Ping ; Pérez-Guijarro, Eva ; Marie, Kerrie ; Lee, Maxwell P ; Merlino, Glenn ; Ergun, Funda ; Sahinalp, S Cenk</creator><creatorcontrib>Sadeqi Azer, Erfan ; Rashidi Mehrabadi, Farid ; Malikić, Salem ; Li, Xuan Cindy ; Bartok, Osnat ; Litchfield, Kevin ; Levy, Ronen ; Samuels, Yardena ; Schäffer, Alejandro A ; Gertz, E Michael ; Day, Chi-Ping ; Pérez-Guijarro, Eva ; Marie, Kerrie ; Lee, Maxwell P ; Merlino, Glenn ; Ergun, Funda ; Sahinalp, S Cenk</creatorcontrib><description>Abstract
Motivation
Recent advances in single-cell sequencing (SCS) offer an unprecedented insight into tumor emergence and evolution. Principled approaches to tumor phylogeny reconstruction via SCS data are typically based on general computational methods for solving an integer linear program, or a constraint satisfaction program, which, although guaranteeing convergence to the most likely solution, are very slow. Others based on Monte Carlo Markov Chain or alternative heuristics not only offer no such guarantee, but also are not faster in practice. As a result, novel methods that can scale up to handle the size and noise characteristics of emerging SCS data are highly desirable to fully utilize this technology.
Results
We introduce PhISCS-BnB (phylogeny inference using SCS via branch and bound), a branch and bound algorithm to compute the most likely perfect phylogeny on an input genotype matrix extracted from an SCS dataset. PhISCS-BnB not only offers an optimality guarantee, but is also 10–100 times faster than the best available methods on simulated tumor SCS data. We also applied PhISCS-BnB on a recently published large melanoma dataset derived from the sublineages of a cell line involving 20 clones with 2367 mutations, which returned the optimal tumor phylogeny in <4 h. The resulting phylogeny agrees with and extends the published results by providing a more detailed picture on the clonal evolution of the tumor.
Availability and implementation
https://github.com/algo-cancer/PhISCS-BnB.
Supplementary information
Supplementary data are available at Bioinformatics online.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btaa464</identifier><identifier>PMID: 32657358</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Algorithms ; Genomic Variation Analysis ; Humans ; Markov Chains ; Neoplasms - genetics ; Phylogeny ; Sequence Analysis ; Software</subject><ispartof>Bioinformatics (Oxford, England), 2020-07, Vol.36 (Supplement_1), p.i169-i176</ispartof><rights>Published by Oxford University Press 2020. 2020</rights><rights>Published by Oxford University Press 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-f86d5168cfdad13070fe1078ba3433d6bba334a6287fd845bfb115a94602b7fd3</citedby><cites>FETCH-LOGICAL-c456t-f86d5168cfdad13070fe1078ba3433d6bba334a6287fd845bfb115a94602b7fd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7355310/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7355310/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,1604,27924,27925,53791,53793</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/bioinformatics/btaa464$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32657358$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sadeqi Azer, Erfan</creatorcontrib><creatorcontrib>Rashidi Mehrabadi, Farid</creatorcontrib><creatorcontrib>Malikić, Salem</creatorcontrib><creatorcontrib>Li, Xuan Cindy</creatorcontrib><creatorcontrib>Bartok, Osnat</creatorcontrib><creatorcontrib>Litchfield, Kevin</creatorcontrib><creatorcontrib>Levy, Ronen</creatorcontrib><creatorcontrib>Samuels, Yardena</creatorcontrib><creatorcontrib>Schäffer, Alejandro A</creatorcontrib><creatorcontrib>Gertz, E Michael</creatorcontrib><creatorcontrib>Day, Chi-Ping</creatorcontrib><creatorcontrib>Pérez-Guijarro, Eva</creatorcontrib><creatorcontrib>Marie, Kerrie</creatorcontrib><creatorcontrib>Lee, Maxwell P</creatorcontrib><creatorcontrib>Merlino, Glenn</creatorcontrib><creatorcontrib>Ergun, Funda</creatorcontrib><creatorcontrib>Sahinalp, S Cenk</creatorcontrib><title>PhISCS-BnB: a fast branch and bound algorithm for the perfect tumor phylogeny reconstruction problem</title><title>Bioinformatics (Oxford, England)</title><addtitle>Bioinformatics</addtitle><description>Abstract
Motivation
Recent advances in single-cell sequencing (SCS) offer an unprecedented insight into tumor emergence and evolution. Principled approaches to tumor phylogeny reconstruction via SCS data are typically based on general computational methods for solving an integer linear program, or a constraint satisfaction program, which, although guaranteeing convergence to the most likely solution, are very slow. Others based on Monte Carlo Markov Chain or alternative heuristics not only offer no such guarantee, but also are not faster in practice. As a result, novel methods that can scale up to handle the size and noise characteristics of emerging SCS data are highly desirable to fully utilize this technology.
Results
We introduce PhISCS-BnB (phylogeny inference using SCS via branch and bound), a branch and bound algorithm to compute the most likely perfect phylogeny on an input genotype matrix extracted from an SCS dataset. PhISCS-BnB not only offers an optimality guarantee, but is also 10–100 times faster than the best available methods on simulated tumor SCS data. We also applied PhISCS-BnB on a recently published large melanoma dataset derived from the sublineages of a cell line involving 20 clones with 2367 mutations, which returned the optimal tumor phylogeny in <4 h. The resulting phylogeny agrees with and extends the published results by providing a more detailed picture on the clonal evolution of the tumor.
Availability and implementation
https://github.com/algo-cancer/PhISCS-BnB.
Supplementary information
Supplementary data are available at Bioinformatics online.</description><subject>Algorithms</subject><subject>Genomic Variation Analysis</subject><subject>Humans</subject><subject>Markov Chains</subject><subject>Neoplasms - genetics</subject><subject>Phylogeny</subject><subject>Sequence Analysis</subject><subject>Software</subject><issn>1367-4803</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqNUU1v1DAQtRCIfsBfqHzkEmrHH8lyQKIroJUqgVQ4W2PH3hgldrCdSvvvcbXLit64zIxm3rw3mofQFSXvKdmwa-2jDy6mGYo3-VoXAC75C3ROmewa3lP68lQTdoYucv5FCBFEyNfojLVSdEz052j4Pt49bB-am3DzAQN2kAvWCYIZMYQB67jWCNMuJl_GGVdFXEaLF5ucNQWXda6dZdxPcWfDHidrYsglrab4GPCSop7s_Aa9cjBl-_aYL9HPL59_bG-b-29f77af7hvDhSyN6-UgqOyNG2CgjHTEWUq6XgPjjA1S14JxkG3fuaHnQjtNqYANl6TVtcUu0ccD77Lq2Q7GhpJgUkvyM6S9iuDV80nwo9rFR1V_IRglleDdkSDF36vNRc0-GztNEGxcs2p5ywTr6OYJKg9Qk2LOybqTDCXqySL13CJ1tKguXv175GntrycVQA-AuC7_S_oHloOnHg</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Sadeqi Azer, Erfan</creator><creator>Rashidi Mehrabadi, Farid</creator><creator>Malikić, Salem</creator><creator>Li, Xuan Cindy</creator><creator>Bartok, Osnat</creator><creator>Litchfield, Kevin</creator><creator>Levy, Ronen</creator><creator>Samuels, Yardena</creator><creator>Schäffer, Alejandro A</creator><creator>Gertz, E Michael</creator><creator>Day, Chi-Ping</creator><creator>Pérez-Guijarro, Eva</creator><creator>Marie, Kerrie</creator><creator>Lee, Maxwell P</creator><creator>Merlino, Glenn</creator><creator>Ergun, Funda</creator><creator>Sahinalp, S Cenk</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200701</creationdate><title>PhISCS-BnB: a fast branch and bound algorithm for the perfect tumor phylogeny reconstruction problem</title><author>Sadeqi Azer, Erfan ; Rashidi Mehrabadi, Farid ; Malikić, Salem ; Li, Xuan Cindy ; Bartok, Osnat ; Litchfield, Kevin ; Levy, Ronen ; Samuels, Yardena ; Schäffer, Alejandro A ; Gertz, E Michael ; Day, Chi-Ping ; Pérez-Guijarro, Eva ; Marie, Kerrie ; Lee, Maxwell P ; Merlino, Glenn ; Ergun, Funda ; Sahinalp, S Cenk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-f86d5168cfdad13070fe1078ba3433d6bba334a6287fd845bfb115a94602b7fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Genomic Variation Analysis</topic><topic>Humans</topic><topic>Markov Chains</topic><topic>Neoplasms - genetics</topic><topic>Phylogeny</topic><topic>Sequence Analysis</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sadeqi Azer, Erfan</creatorcontrib><creatorcontrib>Rashidi Mehrabadi, Farid</creatorcontrib><creatorcontrib>Malikić, Salem</creatorcontrib><creatorcontrib>Li, Xuan Cindy</creatorcontrib><creatorcontrib>Bartok, Osnat</creatorcontrib><creatorcontrib>Litchfield, Kevin</creatorcontrib><creatorcontrib>Levy, Ronen</creatorcontrib><creatorcontrib>Samuels, Yardena</creatorcontrib><creatorcontrib>Schäffer, Alejandro A</creatorcontrib><creatorcontrib>Gertz, E Michael</creatorcontrib><creatorcontrib>Day, Chi-Ping</creatorcontrib><creatorcontrib>Pérez-Guijarro, Eva</creatorcontrib><creatorcontrib>Marie, Kerrie</creatorcontrib><creatorcontrib>Lee, Maxwell P</creatorcontrib><creatorcontrib>Merlino, Glenn</creatorcontrib><creatorcontrib>Ergun, Funda</creatorcontrib><creatorcontrib>Sahinalp, S Cenk</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioinformatics (Oxford, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sadeqi Azer, Erfan</au><au>Rashidi Mehrabadi, Farid</au><au>Malikić, Salem</au><au>Li, Xuan Cindy</au><au>Bartok, Osnat</au><au>Litchfield, Kevin</au><au>Levy, Ronen</au><au>Samuels, Yardena</au><au>Schäffer, Alejandro A</au><au>Gertz, E Michael</au><au>Day, Chi-Ping</au><au>Pérez-Guijarro, Eva</au><au>Marie, Kerrie</au><au>Lee, Maxwell P</au><au>Merlino, Glenn</au><au>Ergun, Funda</au><au>Sahinalp, S Cenk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PhISCS-BnB: a fast branch and bound algorithm for the perfect tumor phylogeny reconstruction problem</atitle><jtitle>Bioinformatics (Oxford, England)</jtitle><addtitle>Bioinformatics</addtitle><date>2020-07-01</date><risdate>2020</risdate><volume>36</volume><issue>Supplement_1</issue><spage>i169</spage><epage>i176</epage><pages>i169-i176</pages><issn>1367-4803</issn><eissn>1367-4811</eissn><abstract>Abstract
Motivation
Recent advances in single-cell sequencing (SCS) offer an unprecedented insight into tumor emergence and evolution. Principled approaches to tumor phylogeny reconstruction via SCS data are typically based on general computational methods for solving an integer linear program, or a constraint satisfaction program, which, although guaranteeing convergence to the most likely solution, are very slow. Others based on Monte Carlo Markov Chain or alternative heuristics not only offer no such guarantee, but also are not faster in practice. As a result, novel methods that can scale up to handle the size and noise characteristics of emerging SCS data are highly desirable to fully utilize this technology.
Results
We introduce PhISCS-BnB (phylogeny inference using SCS via branch and bound), a branch and bound algorithm to compute the most likely perfect phylogeny on an input genotype matrix extracted from an SCS dataset. PhISCS-BnB not only offers an optimality guarantee, but is also 10–100 times faster than the best available methods on simulated tumor SCS data. We also applied PhISCS-BnB on a recently published large melanoma dataset derived from the sublineages of a cell line involving 20 clones with 2367 mutations, which returned the optimal tumor phylogeny in <4 h. The resulting phylogeny agrees with and extends the published results by providing a more detailed picture on the clonal evolution of the tumor.
Availability and implementation
https://github.com/algo-cancer/PhISCS-BnB.
Supplementary information
Supplementary data are available at Bioinformatics online.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>32657358</pmid><doi>10.1093/bioinformatics/btaa464</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1367-4803 |
ispartof | Bioinformatics (Oxford, England), 2020-07, Vol.36 (Supplement_1), p.i169-i176 |
issn | 1367-4803 1367-4811 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7355310 |
source | Oxford University Press Open Access |
subjects | Algorithms Genomic Variation Analysis Humans Markov Chains Neoplasms - genetics Phylogeny Sequence Analysis Software |
title | PhISCS-BnB: a fast branch and bound algorithm for the perfect tumor phylogeny reconstruction problem |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T13%3A58%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PhISCS-BnB:%20a%20fast%20branch%20and%20bound%20algorithm%20for%20the%20perfect%20tumor%20phylogeny%20reconstruction%20problem&rft.jtitle=Bioinformatics%20(Oxford,%20England)&rft.au=Sadeqi%20Azer,%20Erfan&rft.date=2020-07-01&rft.volume=36&rft.issue=Supplement_1&rft.spage=i169&rft.epage=i176&rft.pages=i169-i176&rft.issn=1367-4803&rft.eissn=1367-4811&rft_id=info:doi/10.1093/bioinformatics/btaa464&rft_dat=%3Cproquest_TOX%3E2423537190%3C/proquest_TOX%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c456t-f86d5168cfdad13070fe1078ba3433d6bba334a6287fd845bfb115a94602b7fd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2423537190&rft_id=info:pmid/32657358&rft_oup_id=10.1093/bioinformatics/btaa464&rfr_iscdi=true |