Loading…

Cellular Interactions of Liposomes and PISA Nanoparticles during Human Blood Flow in a Microvascular Network

A key concept in nanomedicine is encapsulating therapeutic or diagnostic agents inside nanoparticles to prolong blood circulation time and to enhance interactions with targeted cells. During circulation and depending on the selected application (e.g., cancer drug delivery or immune modulators), nano...

Full description

Saved in:
Bibliographic Details
Published in:Small 2020-08, Vol.16 (33), p.e2002861-n/a
Main Authors: Vu, Mai N., Kelly, Hannah G., Wheatley, Adam K., Peng, Scott, Pilkington, Emily H., Veldhuis, Nicholas A., Davis, Thomas P., Kent, Stephen J., Truong, Nghia P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4961-f9b297e793c776b6a4deb1feec01e4ee7fd940bf582f2c8a56858ecce8a986d53
cites cdi_FETCH-LOGICAL-c4961-f9b297e793c776b6a4deb1feec01e4ee7fd940bf582f2c8a56858ecce8a986d53
container_end_page n/a
container_issue 33
container_start_page e2002861
container_title Small
container_volume 16
creator Vu, Mai N.
Kelly, Hannah G.
Wheatley, Adam K.
Peng, Scott
Pilkington, Emily H.
Veldhuis, Nicholas A.
Davis, Thomas P.
Kent, Stephen J.
Truong, Nghia P.
description A key concept in nanomedicine is encapsulating therapeutic or diagnostic agents inside nanoparticles to prolong blood circulation time and to enhance interactions with targeted cells. During circulation and depending on the selected application (e.g., cancer drug delivery or immune modulators), nanoparticles are required to possess low or high interactions with cells in human blood and blood vessels to minimize side effects or maximize delivery efficiency. However, analysis of cellular interactions in blood vessels is challenging and is not yet realized due to the diverse components of human blood and hemodynamic flow in blood vessels. Here, the first comprehensive method to analyze cellular interactions of both synthetic and commercially available nanoparticles under human blood flow conditions in a microvascular network is developed. Importantly, this method allows to unravel the complex interplay of size, charge, and type of nanoparticles on their cellular associations under the dynamic flow of human blood. This method offers a unique platform to study complex interactions of any type of nanoparticles in human blood flow conditions and serves as a useful guideline for the rational design of liposomes and polymer nanoparticles for diverse applications in nanomedicine. An innovative methodology to characterize cellular interactions of nanomaterials under human blood flow conditions is developed. Fresh whole human blood and an artificial microvascular network are employed for the first time. This platform is easy to set up in any lab and can be applied to future studies of any type of nanoparticles.
doi_str_mv 10.1002/smll.202002861
format article
fullrecord <record><control><sourceid>proquest_COVID</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7361276</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2435385434</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4961-f9b297e793c776b6a4deb1feec01e4ee7fd940bf582f2c8a56858ecce8a986d53</originalsourceid><addsrcrecordid>eNqFkc1vFCEYh4nR2A-9ejQknnflaxi4mNSNbTeZVpO2Z8Iw71QqAyvMdNP_3qlbV73ogfAGHp78wg-hN5QsKSHsfRlCWDLC5llJ-gwdUkn5Qiqmn-9nSg7QUSl3hHDKRP0SHXBWKa4VPURhBSFMwWa8jiNk60afYsGpx43fpJIGKNjGDn9ZX53gSxvTxubRuzAfd1P28RafT4ON-GNIqcOnIW2xj9jiC-9yurfF_XRfwrhN-dsr9KK3ocDrp_0Y3Zx-ul6dL5rPZ-vVSbNwQku66HXLdA215q6uZSut6KClPYAjFARA3XdakLavFOuZU7aSqlLgHCirlewqfow-7LybqR2gcxDHbIPZZD_Y_GCS9ebvm-i_mtt0b2ouKavlLHj3JMjp-wRlNHdpynHObJjgFVeV4OLfFK3nxYSaqeWOmj-klAz9Pgcl5rFD89ih2Xc4P3j7Z_o9_qu0GdA7YOsDPPxHZ64umua3_AcNfKqn</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2417241248</pqid></control><display><type>article</type><title>Cellular Interactions of Liposomes and PISA Nanoparticles during Human Blood Flow in a Microvascular Network</title><source>Coronavirus Research Database</source><creator>Vu, Mai N. ; Kelly, Hannah G. ; Wheatley, Adam K. ; Peng, Scott ; Pilkington, Emily H. ; Veldhuis, Nicholas A. ; Davis, Thomas P. ; Kent, Stephen J. ; Truong, Nghia P.</creator><creatorcontrib>Vu, Mai N. ; Kelly, Hannah G. ; Wheatley, Adam K. ; Peng, Scott ; Pilkington, Emily H. ; Veldhuis, Nicholas A. ; Davis, Thomas P. ; Kent, Stephen J. ; Truong, Nghia P.</creatorcontrib><description>A key concept in nanomedicine is encapsulating therapeutic or diagnostic agents inside nanoparticles to prolong blood circulation time and to enhance interactions with targeted cells. During circulation and depending on the selected application (e.g., cancer drug delivery or immune modulators), nanoparticles are required to possess low or high interactions with cells in human blood and blood vessels to minimize side effects or maximize delivery efficiency. However, analysis of cellular interactions in blood vessels is challenging and is not yet realized due to the diverse components of human blood and hemodynamic flow in blood vessels. Here, the first comprehensive method to analyze cellular interactions of both synthetic and commercially available nanoparticles under human blood flow conditions in a microvascular network is developed. Importantly, this method allows to unravel the complex interplay of size, charge, and type of nanoparticles on their cellular associations under the dynamic flow of human blood. This method offers a unique platform to study complex interactions of any type of nanoparticles in human blood flow conditions and serves as a useful guideline for the rational design of liposomes and polymer nanoparticles for diverse applications in nanomedicine. An innovative methodology to characterize cellular interactions of nanomaterials under human blood flow conditions is developed. Fresh whole human blood and an artificial microvascular network are employed for the first time. This platform is easy to set up in any lab and can be applied to future studies of any type of nanoparticles.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202002861</identifier><identifier>PMID: 32583981</identifier><language>eng</language><publisher>Germany: John Wiley &amp; Sons, Inc</publisher><subject>Blood circulation ; Blood flow ; Blood vessels ; cellular interactions ; Chemical compounds ; Diagnostic systems ; Drug delivery systems ; fresh human blood ; Hemodynamics ; Humans ; Liposomes ; Microvessels ; Modulators ; Nanoparticles ; Nanotechnology ; Pharmacology ; PISA nanoparticles ; Polymerization ; polymerization‐induced self‐assembly ; reversible addition‐fragmentation chain transfer (RAFT) ; Side effects</subject><ispartof>Small, 2020-08, Vol.16 (33), p.e2002861-n/a</ispartof><rights>2020 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2020 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2020. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at https://novel-coronavirus.onlinelibrary.wiley.com</rights><rights>2020 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4961-f9b297e793c776b6a4deb1feec01e4ee7fd940bf582f2c8a56858ecce8a986d53</citedby><cites>FETCH-LOGICAL-c4961-f9b297e793c776b6a4deb1feec01e4ee7fd940bf582f2c8a56858ecce8a986d53</cites><orcidid>0000-0001-9900-2644 ; 0000-0002-8539-4891 ; 0000-0003-2581-4986</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2417241248?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,38516,43895</link.rule.ids><linktorsrc>$$Uhttps://www.proquest.com/docview/2417241248?pq-origsite=primo$$EView_record_in_ProQuest$$FView_record_in_$$GProQuest</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32583981$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vu, Mai N.</creatorcontrib><creatorcontrib>Kelly, Hannah G.</creatorcontrib><creatorcontrib>Wheatley, Adam K.</creatorcontrib><creatorcontrib>Peng, Scott</creatorcontrib><creatorcontrib>Pilkington, Emily H.</creatorcontrib><creatorcontrib>Veldhuis, Nicholas A.</creatorcontrib><creatorcontrib>Davis, Thomas P.</creatorcontrib><creatorcontrib>Kent, Stephen J.</creatorcontrib><creatorcontrib>Truong, Nghia P.</creatorcontrib><title>Cellular Interactions of Liposomes and PISA Nanoparticles during Human Blood Flow in a Microvascular Network</title><title>Small</title><addtitle>Small</addtitle><description>A key concept in nanomedicine is encapsulating therapeutic or diagnostic agents inside nanoparticles to prolong blood circulation time and to enhance interactions with targeted cells. During circulation and depending on the selected application (e.g., cancer drug delivery or immune modulators), nanoparticles are required to possess low or high interactions with cells in human blood and blood vessels to minimize side effects or maximize delivery efficiency. However, analysis of cellular interactions in blood vessels is challenging and is not yet realized due to the diverse components of human blood and hemodynamic flow in blood vessels. Here, the first comprehensive method to analyze cellular interactions of both synthetic and commercially available nanoparticles under human blood flow conditions in a microvascular network is developed. Importantly, this method allows to unravel the complex interplay of size, charge, and type of nanoparticles on their cellular associations under the dynamic flow of human blood. This method offers a unique platform to study complex interactions of any type of nanoparticles in human blood flow conditions and serves as a useful guideline for the rational design of liposomes and polymer nanoparticles for diverse applications in nanomedicine. An innovative methodology to characterize cellular interactions of nanomaterials under human blood flow conditions is developed. Fresh whole human blood and an artificial microvascular network are employed for the first time. This platform is easy to set up in any lab and can be applied to future studies of any type of nanoparticles.</description><subject>Blood circulation</subject><subject>Blood flow</subject><subject>Blood vessels</subject><subject>cellular interactions</subject><subject>Chemical compounds</subject><subject>Diagnostic systems</subject><subject>Drug delivery systems</subject><subject>fresh human blood</subject><subject>Hemodynamics</subject><subject>Humans</subject><subject>Liposomes</subject><subject>Microvessels</subject><subject>Modulators</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Pharmacology</subject><subject>PISA nanoparticles</subject><subject>Polymerization</subject><subject>polymerization‐induced self‐assembly</subject><subject>reversible addition‐fragmentation chain transfer (RAFT)</subject><subject>Side effects</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><recordid>eNqFkc1vFCEYh4nR2A-9ejQknnflaxi4mNSNbTeZVpO2Z8Iw71QqAyvMdNP_3qlbV73ogfAGHp78wg-hN5QsKSHsfRlCWDLC5llJ-gwdUkn5Qiqmn-9nSg7QUSl3hHDKRP0SHXBWKa4VPURhBSFMwWa8jiNk60afYsGpx43fpJIGKNjGDn9ZX53gSxvTxubRuzAfd1P28RafT4ON-GNIqcOnIW2xj9jiC-9yurfF_XRfwrhN-dsr9KK3ocDrp_0Y3Zx-ul6dL5rPZ-vVSbNwQku66HXLdA215q6uZSut6KClPYAjFARA3XdakLavFOuZU7aSqlLgHCirlewqfow-7LybqR2gcxDHbIPZZD_Y_GCS9ebvm-i_mtt0b2ouKavlLHj3JMjp-wRlNHdpynHObJjgFVeV4OLfFK3nxYSaqeWOmj-klAz9Pgcl5rFD89ih2Xc4P3j7Z_o9_qu0GdA7YOsDPPxHZ64umua3_AcNfKqn</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Vu, Mai N.</creator><creator>Kelly, Hannah G.</creator><creator>Wheatley, Adam K.</creator><creator>Peng, Scott</creator><creator>Pilkington, Emily H.</creator><creator>Veldhuis, Nicholas A.</creator><creator>Davis, Thomas P.</creator><creator>Kent, Stephen J.</creator><creator>Truong, Nghia P.</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>COVID</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9900-2644</orcidid><orcidid>https://orcid.org/0000-0002-8539-4891</orcidid><orcidid>https://orcid.org/0000-0003-2581-4986</orcidid></search><sort><creationdate>20200801</creationdate><title>Cellular Interactions of Liposomes and PISA Nanoparticles during Human Blood Flow in a Microvascular Network</title><author>Vu, Mai N. ; Kelly, Hannah G. ; Wheatley, Adam K. ; Peng, Scott ; Pilkington, Emily H. ; Veldhuis, Nicholas A. ; Davis, Thomas P. ; Kent, Stephen J. ; Truong, Nghia P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4961-f9b297e793c776b6a4deb1feec01e4ee7fd940bf582f2c8a56858ecce8a986d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Blood circulation</topic><topic>Blood flow</topic><topic>Blood vessels</topic><topic>cellular interactions</topic><topic>Chemical compounds</topic><topic>Diagnostic systems</topic><topic>Drug delivery systems</topic><topic>fresh human blood</topic><topic>Hemodynamics</topic><topic>Humans</topic><topic>Liposomes</topic><topic>Microvessels</topic><topic>Modulators</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Pharmacology</topic><topic>PISA nanoparticles</topic><topic>Polymerization</topic><topic>polymerization‐induced self‐assembly</topic><topic>reversible addition‐fragmentation chain transfer (RAFT)</topic><topic>Side effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vu, Mai N.</creatorcontrib><creatorcontrib>Kelly, Hannah G.</creatorcontrib><creatorcontrib>Wheatley, Adam K.</creatorcontrib><creatorcontrib>Peng, Scott</creatorcontrib><creatorcontrib>Pilkington, Emily H.</creatorcontrib><creatorcontrib>Veldhuis, Nicholas A.</creatorcontrib><creatorcontrib>Davis, Thomas P.</creatorcontrib><creatorcontrib>Kent, Stephen J.</creatorcontrib><creatorcontrib>Truong, Nghia P.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Coronavirus Research Database</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Small</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Vu, Mai N.</au><au>Kelly, Hannah G.</au><au>Wheatley, Adam K.</au><au>Peng, Scott</au><au>Pilkington, Emily H.</au><au>Veldhuis, Nicholas A.</au><au>Davis, Thomas P.</au><au>Kent, Stephen J.</au><au>Truong, Nghia P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cellular Interactions of Liposomes and PISA Nanoparticles during Human Blood Flow in a Microvascular Network</atitle><jtitle>Small</jtitle><addtitle>Small</addtitle><date>2020-08-01</date><risdate>2020</risdate><volume>16</volume><issue>33</issue><spage>e2002861</spage><epage>n/a</epage><pages>e2002861-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>A key concept in nanomedicine is encapsulating therapeutic or diagnostic agents inside nanoparticles to prolong blood circulation time and to enhance interactions with targeted cells. During circulation and depending on the selected application (e.g., cancer drug delivery or immune modulators), nanoparticles are required to possess low or high interactions with cells in human blood and blood vessels to minimize side effects or maximize delivery efficiency. However, analysis of cellular interactions in blood vessels is challenging and is not yet realized due to the diverse components of human blood and hemodynamic flow in blood vessels. Here, the first comprehensive method to analyze cellular interactions of both synthetic and commercially available nanoparticles under human blood flow conditions in a microvascular network is developed. Importantly, this method allows to unravel the complex interplay of size, charge, and type of nanoparticles on their cellular associations under the dynamic flow of human blood. This method offers a unique platform to study complex interactions of any type of nanoparticles in human blood flow conditions and serves as a useful guideline for the rational design of liposomes and polymer nanoparticles for diverse applications in nanomedicine. An innovative methodology to characterize cellular interactions of nanomaterials under human blood flow conditions is developed. Fresh whole human blood and an artificial microvascular network are employed for the first time. This platform is easy to set up in any lab and can be applied to future studies of any type of nanoparticles.</abstract><cop>Germany</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>32583981</pmid><doi>10.1002/smll.202002861</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9900-2644</orcidid><orcidid>https://orcid.org/0000-0002-8539-4891</orcidid><orcidid>https://orcid.org/0000-0003-2581-4986</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1613-6810
ispartof Small, 2020-08, Vol.16 (33), p.e2002861-n/a
issn 1613-6810
1613-6829
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7361276
source Coronavirus Research Database
subjects Blood circulation
Blood flow
Blood vessels
cellular interactions
Chemical compounds
Diagnostic systems
Drug delivery systems
fresh human blood
Hemodynamics
Humans
Liposomes
Microvessels
Modulators
Nanoparticles
Nanotechnology
Pharmacology
PISA nanoparticles
Polymerization
polymerization‐induced self‐assembly
reversible addition‐fragmentation chain transfer (RAFT)
Side effects
title Cellular Interactions of Liposomes and PISA Nanoparticles during Human Blood Flow in a Microvascular Network
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T09%3A45%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_COVID&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cellular%20Interactions%20of%20Liposomes%20and%20PISA%20Nanoparticles%20during%20Human%20Blood%20Flow%20in%20a%20Microvascular%20Network&rft.jtitle=Small&rft.au=Vu,%20Mai%20N.&rft.date=2020-08-01&rft.volume=16&rft.issue=33&rft.spage=e2002861&rft.epage=n/a&rft.pages=e2002861-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202002861&rft_dat=%3Cproquest_COVID%3E2435385434%3C/proquest_COVID%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4961-f9b297e793c776b6a4deb1feec01e4ee7fd940bf582f2c8a56858ecce8a986d53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2417241248&rft_id=info:pmid/32583981&rfr_iscdi=true