Loading…
Cellular Interactions of Liposomes and PISA Nanoparticles during Human Blood Flow in a Microvascular Network
A key concept in nanomedicine is encapsulating therapeutic or diagnostic agents inside nanoparticles to prolong blood circulation time and to enhance interactions with targeted cells. During circulation and depending on the selected application (e.g., cancer drug delivery or immune modulators), nano...
Saved in:
Published in: | Small 2020-08, Vol.16 (33), p.e2002861-n/a |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4961-f9b297e793c776b6a4deb1feec01e4ee7fd940bf582f2c8a56858ecce8a986d53 |
---|---|
cites | cdi_FETCH-LOGICAL-c4961-f9b297e793c776b6a4deb1feec01e4ee7fd940bf582f2c8a56858ecce8a986d53 |
container_end_page | n/a |
container_issue | 33 |
container_start_page | e2002861 |
container_title | Small |
container_volume | 16 |
creator | Vu, Mai N. Kelly, Hannah G. Wheatley, Adam K. Peng, Scott Pilkington, Emily H. Veldhuis, Nicholas A. Davis, Thomas P. Kent, Stephen J. Truong, Nghia P. |
description | A key concept in nanomedicine is encapsulating therapeutic or diagnostic agents inside nanoparticles to prolong blood circulation time and to enhance interactions with targeted cells. During circulation and depending on the selected application (e.g., cancer drug delivery or immune modulators), nanoparticles are required to possess low or high interactions with cells in human blood and blood vessels to minimize side effects or maximize delivery efficiency. However, analysis of cellular interactions in blood vessels is challenging and is not yet realized due to the diverse components of human blood and hemodynamic flow in blood vessels. Here, the first comprehensive method to analyze cellular interactions of both synthetic and commercially available nanoparticles under human blood flow conditions in a microvascular network is developed. Importantly, this method allows to unravel the complex interplay of size, charge, and type of nanoparticles on their cellular associations under the dynamic flow of human blood. This method offers a unique platform to study complex interactions of any type of nanoparticles in human blood flow conditions and serves as a useful guideline for the rational design of liposomes and polymer nanoparticles for diverse applications in nanomedicine.
An innovative methodology to characterize cellular interactions of nanomaterials under human blood flow conditions is developed. Fresh whole human blood and an artificial microvascular network are employed for the first time. This platform is easy to set up in any lab and can be applied to future studies of any type of nanoparticles. |
doi_str_mv | 10.1002/smll.202002861 |
format | article |
fullrecord | <record><control><sourceid>proquest_COVID</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7361276</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2435385434</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4961-f9b297e793c776b6a4deb1feec01e4ee7fd940bf582f2c8a56858ecce8a986d53</originalsourceid><addsrcrecordid>eNqFkc1vFCEYh4nR2A-9ejQknnflaxi4mNSNbTeZVpO2Z8Iw71QqAyvMdNP_3qlbV73ogfAGHp78wg-hN5QsKSHsfRlCWDLC5llJ-gwdUkn5Qiqmn-9nSg7QUSl3hHDKRP0SHXBWKa4VPURhBSFMwWa8jiNk60afYsGpx43fpJIGKNjGDn9ZX53gSxvTxubRuzAfd1P28RafT4ON-GNIqcOnIW2xj9jiC-9yurfF_XRfwrhN-dsr9KK3ocDrp_0Y3Zx-ul6dL5rPZ-vVSbNwQku66HXLdA215q6uZSut6KClPYAjFARA3XdakLavFOuZU7aSqlLgHCirlewqfow-7LybqR2gcxDHbIPZZD_Y_GCS9ebvm-i_mtt0b2ouKavlLHj3JMjp-wRlNHdpynHObJjgFVeV4OLfFK3nxYSaqeWOmj-klAz9Pgcl5rFD89ih2Xc4P3j7Z_o9_qu0GdA7YOsDPPxHZ64umua3_AcNfKqn</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2417241248</pqid></control><display><type>article</type><title>Cellular Interactions of Liposomes and PISA Nanoparticles during Human Blood Flow in a Microvascular Network</title><source>Coronavirus Research Database</source><creator>Vu, Mai N. ; Kelly, Hannah G. ; Wheatley, Adam K. ; Peng, Scott ; Pilkington, Emily H. ; Veldhuis, Nicholas A. ; Davis, Thomas P. ; Kent, Stephen J. ; Truong, Nghia P.</creator><creatorcontrib>Vu, Mai N. ; Kelly, Hannah G. ; Wheatley, Adam K. ; Peng, Scott ; Pilkington, Emily H. ; Veldhuis, Nicholas A. ; Davis, Thomas P. ; Kent, Stephen J. ; Truong, Nghia P.</creatorcontrib><description>A key concept in nanomedicine is encapsulating therapeutic or diagnostic agents inside nanoparticles to prolong blood circulation time and to enhance interactions with targeted cells. During circulation and depending on the selected application (e.g., cancer drug delivery or immune modulators), nanoparticles are required to possess low or high interactions with cells in human blood and blood vessels to minimize side effects or maximize delivery efficiency. However, analysis of cellular interactions in blood vessels is challenging and is not yet realized due to the diverse components of human blood and hemodynamic flow in blood vessels. Here, the first comprehensive method to analyze cellular interactions of both synthetic and commercially available nanoparticles under human blood flow conditions in a microvascular network is developed. Importantly, this method allows to unravel the complex interplay of size, charge, and type of nanoparticles on their cellular associations under the dynamic flow of human blood. This method offers a unique platform to study complex interactions of any type of nanoparticles in human blood flow conditions and serves as a useful guideline for the rational design of liposomes and polymer nanoparticles for diverse applications in nanomedicine.
An innovative methodology to characterize cellular interactions of nanomaterials under human blood flow conditions is developed. Fresh whole human blood and an artificial microvascular network are employed for the first time. This platform is easy to set up in any lab and can be applied to future studies of any type of nanoparticles.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202002861</identifier><identifier>PMID: 32583981</identifier><language>eng</language><publisher>Germany: John Wiley & Sons, Inc</publisher><subject>Blood circulation ; Blood flow ; Blood vessels ; cellular interactions ; Chemical compounds ; Diagnostic systems ; Drug delivery systems ; fresh human blood ; Hemodynamics ; Humans ; Liposomes ; Microvessels ; Modulators ; Nanoparticles ; Nanotechnology ; Pharmacology ; PISA nanoparticles ; Polymerization ; polymerization‐induced self‐assembly ; reversible addition‐fragmentation chain transfer (RAFT) ; Side effects</subject><ispartof>Small, 2020-08, Vol.16 (33), p.e2002861-n/a</ispartof><rights>2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>2020. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at https://novel-coronavirus.onlinelibrary.wiley.com</rights><rights>2020 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4961-f9b297e793c776b6a4deb1feec01e4ee7fd940bf582f2c8a56858ecce8a986d53</citedby><cites>FETCH-LOGICAL-c4961-f9b297e793c776b6a4deb1feec01e4ee7fd940bf582f2c8a56858ecce8a986d53</cites><orcidid>0000-0001-9900-2644 ; 0000-0002-8539-4891 ; 0000-0003-2581-4986</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2417241248?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,38516,43895</link.rule.ids><linktorsrc>$$Uhttps://www.proquest.com/docview/2417241248?pq-origsite=primo$$EView_record_in_ProQuest$$FView_record_in_$$GProQuest</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32583981$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vu, Mai N.</creatorcontrib><creatorcontrib>Kelly, Hannah G.</creatorcontrib><creatorcontrib>Wheatley, Adam K.</creatorcontrib><creatorcontrib>Peng, Scott</creatorcontrib><creatorcontrib>Pilkington, Emily H.</creatorcontrib><creatorcontrib>Veldhuis, Nicholas A.</creatorcontrib><creatorcontrib>Davis, Thomas P.</creatorcontrib><creatorcontrib>Kent, Stephen J.</creatorcontrib><creatorcontrib>Truong, Nghia P.</creatorcontrib><title>Cellular Interactions of Liposomes and PISA Nanoparticles during Human Blood Flow in a Microvascular Network</title><title>Small</title><addtitle>Small</addtitle><description>A key concept in nanomedicine is encapsulating therapeutic or diagnostic agents inside nanoparticles to prolong blood circulation time and to enhance interactions with targeted cells. During circulation and depending on the selected application (e.g., cancer drug delivery or immune modulators), nanoparticles are required to possess low or high interactions with cells in human blood and blood vessels to minimize side effects or maximize delivery efficiency. However, analysis of cellular interactions in blood vessels is challenging and is not yet realized due to the diverse components of human blood and hemodynamic flow in blood vessels. Here, the first comprehensive method to analyze cellular interactions of both synthetic and commercially available nanoparticles under human blood flow conditions in a microvascular network is developed. Importantly, this method allows to unravel the complex interplay of size, charge, and type of nanoparticles on their cellular associations under the dynamic flow of human blood. This method offers a unique platform to study complex interactions of any type of nanoparticles in human blood flow conditions and serves as a useful guideline for the rational design of liposomes and polymer nanoparticles for diverse applications in nanomedicine.
An innovative methodology to characterize cellular interactions of nanomaterials under human blood flow conditions is developed. Fresh whole human blood and an artificial microvascular network are employed for the first time. This platform is easy to set up in any lab and can be applied to future studies of any type of nanoparticles.</description><subject>Blood circulation</subject><subject>Blood flow</subject><subject>Blood vessels</subject><subject>cellular interactions</subject><subject>Chemical compounds</subject><subject>Diagnostic systems</subject><subject>Drug delivery systems</subject><subject>fresh human blood</subject><subject>Hemodynamics</subject><subject>Humans</subject><subject>Liposomes</subject><subject>Microvessels</subject><subject>Modulators</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Pharmacology</subject><subject>PISA nanoparticles</subject><subject>Polymerization</subject><subject>polymerization‐induced self‐assembly</subject><subject>reversible addition‐fragmentation chain transfer (RAFT)</subject><subject>Side effects</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><recordid>eNqFkc1vFCEYh4nR2A-9ejQknnflaxi4mNSNbTeZVpO2Z8Iw71QqAyvMdNP_3qlbV73ogfAGHp78wg-hN5QsKSHsfRlCWDLC5llJ-gwdUkn5Qiqmn-9nSg7QUSl3hHDKRP0SHXBWKa4VPURhBSFMwWa8jiNk60afYsGpx43fpJIGKNjGDn9ZX53gSxvTxubRuzAfd1P28RafT4ON-GNIqcOnIW2xj9jiC-9yurfF_XRfwrhN-dsr9KK3ocDrp_0Y3Zx-ul6dL5rPZ-vVSbNwQku66HXLdA215q6uZSut6KClPYAjFARA3XdakLavFOuZU7aSqlLgHCirlewqfow-7LybqR2gcxDHbIPZZD_Y_GCS9ebvm-i_mtt0b2ouKavlLHj3JMjp-wRlNHdpynHObJjgFVeV4OLfFK3nxYSaqeWOmj-klAz9Pgcl5rFD89ih2Xc4P3j7Z_o9_qu0GdA7YOsDPPxHZ64umua3_AcNfKqn</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Vu, Mai N.</creator><creator>Kelly, Hannah G.</creator><creator>Wheatley, Adam K.</creator><creator>Peng, Scott</creator><creator>Pilkington, Emily H.</creator><creator>Veldhuis, Nicholas A.</creator><creator>Davis, Thomas P.</creator><creator>Kent, Stephen J.</creator><creator>Truong, Nghia P.</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>COVID</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9900-2644</orcidid><orcidid>https://orcid.org/0000-0002-8539-4891</orcidid><orcidid>https://orcid.org/0000-0003-2581-4986</orcidid></search><sort><creationdate>20200801</creationdate><title>Cellular Interactions of Liposomes and PISA Nanoparticles during Human Blood Flow in a Microvascular Network</title><author>Vu, Mai N. ; Kelly, Hannah G. ; Wheatley, Adam K. ; Peng, Scott ; Pilkington, Emily H. ; Veldhuis, Nicholas A. ; Davis, Thomas P. ; Kent, Stephen J. ; Truong, Nghia P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4961-f9b297e793c776b6a4deb1feec01e4ee7fd940bf582f2c8a56858ecce8a986d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Blood circulation</topic><topic>Blood flow</topic><topic>Blood vessels</topic><topic>cellular interactions</topic><topic>Chemical compounds</topic><topic>Diagnostic systems</topic><topic>Drug delivery systems</topic><topic>fresh human blood</topic><topic>Hemodynamics</topic><topic>Humans</topic><topic>Liposomes</topic><topic>Microvessels</topic><topic>Modulators</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Pharmacology</topic><topic>PISA nanoparticles</topic><topic>Polymerization</topic><topic>polymerization‐induced self‐assembly</topic><topic>reversible addition‐fragmentation chain transfer (RAFT)</topic><topic>Side effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vu, Mai N.</creatorcontrib><creatorcontrib>Kelly, Hannah G.</creatorcontrib><creatorcontrib>Wheatley, Adam K.</creatorcontrib><creatorcontrib>Peng, Scott</creatorcontrib><creatorcontrib>Pilkington, Emily H.</creatorcontrib><creatorcontrib>Veldhuis, Nicholas A.</creatorcontrib><creatorcontrib>Davis, Thomas P.</creatorcontrib><creatorcontrib>Kent, Stephen J.</creatorcontrib><creatorcontrib>Truong, Nghia P.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Coronavirus Research Database</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Small</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Vu, Mai N.</au><au>Kelly, Hannah G.</au><au>Wheatley, Adam K.</au><au>Peng, Scott</au><au>Pilkington, Emily H.</au><au>Veldhuis, Nicholas A.</au><au>Davis, Thomas P.</au><au>Kent, Stephen J.</au><au>Truong, Nghia P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cellular Interactions of Liposomes and PISA Nanoparticles during Human Blood Flow in a Microvascular Network</atitle><jtitle>Small</jtitle><addtitle>Small</addtitle><date>2020-08-01</date><risdate>2020</risdate><volume>16</volume><issue>33</issue><spage>e2002861</spage><epage>n/a</epage><pages>e2002861-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>A key concept in nanomedicine is encapsulating therapeutic or diagnostic agents inside nanoparticles to prolong blood circulation time and to enhance interactions with targeted cells. During circulation and depending on the selected application (e.g., cancer drug delivery or immune modulators), nanoparticles are required to possess low or high interactions with cells in human blood and blood vessels to minimize side effects or maximize delivery efficiency. However, analysis of cellular interactions in blood vessels is challenging and is not yet realized due to the diverse components of human blood and hemodynamic flow in blood vessels. Here, the first comprehensive method to analyze cellular interactions of both synthetic and commercially available nanoparticles under human blood flow conditions in a microvascular network is developed. Importantly, this method allows to unravel the complex interplay of size, charge, and type of nanoparticles on their cellular associations under the dynamic flow of human blood. This method offers a unique platform to study complex interactions of any type of nanoparticles in human blood flow conditions and serves as a useful guideline for the rational design of liposomes and polymer nanoparticles for diverse applications in nanomedicine.
An innovative methodology to characterize cellular interactions of nanomaterials under human blood flow conditions is developed. Fresh whole human blood and an artificial microvascular network are employed for the first time. This platform is easy to set up in any lab and can be applied to future studies of any type of nanoparticles.</abstract><cop>Germany</cop><pub>John Wiley & Sons, Inc</pub><pmid>32583981</pmid><doi>10.1002/smll.202002861</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9900-2644</orcidid><orcidid>https://orcid.org/0000-0002-8539-4891</orcidid><orcidid>https://orcid.org/0000-0003-2581-4986</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1613-6810 |
ispartof | Small, 2020-08, Vol.16 (33), p.e2002861-n/a |
issn | 1613-6810 1613-6829 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7361276 |
source | Coronavirus Research Database |
subjects | Blood circulation Blood flow Blood vessels cellular interactions Chemical compounds Diagnostic systems Drug delivery systems fresh human blood Hemodynamics Humans Liposomes Microvessels Modulators Nanoparticles Nanotechnology Pharmacology PISA nanoparticles Polymerization polymerization‐induced self‐assembly reversible addition‐fragmentation chain transfer (RAFT) Side effects |
title | Cellular Interactions of Liposomes and PISA Nanoparticles during Human Blood Flow in a Microvascular Network |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T09%3A45%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_COVID&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cellular%20Interactions%20of%20Liposomes%20and%20PISA%20Nanoparticles%20during%20Human%20Blood%20Flow%20in%20a%20Microvascular%20Network&rft.jtitle=Small&rft.au=Vu,%20Mai%20N.&rft.date=2020-08-01&rft.volume=16&rft.issue=33&rft.spage=e2002861&rft.epage=n/a&rft.pages=e2002861-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202002861&rft_dat=%3Cproquest_COVID%3E2435385434%3C/proquest_COVID%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4961-f9b297e793c776b6a4deb1feec01e4ee7fd940bf582f2c8a56858ecce8a986d53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2417241248&rft_id=info:pmid/32583981&rfr_iscdi=true |