Loading…
Dynamic human MutSα–MutLα complexes compact mismatched DNA
DNA mismatch repair (MMR) corrects errors that occur during DNA replication. In humans, mutations in the proteins MutSα and MutLα that initiate MMR cause Lynch syndrome, the most common hereditary cancer. MutSα surveilles the DNA, and upon recognition of a replication error it undergoes adenosine tr...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2020-07, Vol.117 (28), p.16302-16312 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c513t-bef4298b803e2ab4570aebe560bd2709fcc8977ebe7c959cab9d42b91444b5953 |
---|---|
cites | cdi_FETCH-LOGICAL-c513t-bef4298b803e2ab4570aebe560bd2709fcc8977ebe7c959cab9d42b91444b5953 |
container_end_page | 16312 |
container_issue | 28 |
container_start_page | 16302 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 117 |
creator | Bradford, Kira C. Wilkins, Hunter Hao, Pengyu Li, Zimeng M. Wang, Bangchen Burke, Dan Wu, Dong Smith, Austin E. Spaller, Logan Du, Chunwei Gauer, Jacob W. Chan, Edward Hsieh, Peggy Weninger, Keith R. Erie, Dorothy A. |
description | DNA mismatch repair (MMR) corrects errors that occur during DNA replication. In humans, mutations in the proteins MutSα and MutLα that initiate MMR cause Lynch syndrome, the most common hereditary cancer. MutSα surveilles the DNA, and upon recognition of a replication error it undergoes adenosine triphosphate-dependent conformational changes and recruits MutLα. Subsequently, proliferating cell nuclear antigen (PCNA) activates MutLα to nick the error-containing strand to allow excision and resynthesis. The structure–function properties of these obligate MutSα–MutLα complexes remain mostly unexplored in higher eukaryotes, and models are predominately based on studies of prokaryotic proteins. Here, we utilize atomic force microscopy (AFM) coupled with other methods to reveal time- and concentration-dependent stoichiometries and conformations of assembling human MutSα–MutLα–DNA complexes.We find that they assemble into multimeric complexes comprising three to eight proteins around a mismatch on DNA. On the timescale of a few minutes, these complexes rearrange, folding and compacting the DNA. These observations contrast with dominant models of MMR initiation that envision diffusive MutS–MutL complexes that move away from the mismatch. Our results suggest MutSα localizes MutLα near the mismatch and promotes DNA configurations that could enhance MMR efficiency by facilitating MutLα nicking the DNA at multiple sites around the mismatch. In addition, such complexes may also protect the mismatch region from nucleosome reassembly until repair occurs, and they could potentially remodel adjacent nucleosomes. |
doi_str_mv | 10.1073/pnas.1918519117 |
format | article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7368325</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26935221</jstor_id><sourcerecordid>26935221</sourcerecordid><originalsourceid>FETCH-LOGICAL-c513t-bef4298b803e2ab4570aebe560bd2709fcc8977ebe7c959cab9d42b91444b5953</originalsourceid><addsrcrecordid>eNpdkTlOBDEQRS0EgmGJiUAtkZA0lLe2nSAhdmmAAIgt2-NhetTL0O5GkHEHTsJFOAQnwTAwLImr5Hr-rq-P0DqGHQyC7k4qE3awwpLHA4s51MOgcJoxBfOoB0BEKhlhS2g5hDEAKC5hES1RwmWmOOuhvcPHypS5S0ZdaarkvGuvXl_enp5j0399SVxdTgr_4MNnZ1yblHkoTetGfpAcXuyvooWhKYJf-6or6Ob46PrgNO1fnpwd7PdTxzFtU-uHjChpJVBPjGVcgPHW8wzsgAhQQ-ekEiJeCae4csaqASNWYcaY5YrTFbQ31Z10tvQD56u2MYWeNHlpmkddm1z_nVT5SN_W91rQTEa3UWD7S6Cp7zofWh2NOF8UpvJ1FzRhWGIC7POvrX_ouO6aKtqLFOEADGgWqd0p5Zo6hMYPZ8tg0B_Z6I9s9E828cXmbw8z_juMCGxMgXFo62Y2J5minBBM3wFtSJai</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2425004036</pqid></control><display><type>article</type><title>Dynamic human MutSα–MutLα complexes compact mismatched DNA</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>PubMed Central</source><creator>Bradford, Kira C. ; Wilkins, Hunter ; Hao, Pengyu ; Li, Zimeng M. ; Wang, Bangchen ; Burke, Dan ; Wu, Dong ; Smith, Austin E. ; Spaller, Logan ; Du, Chunwei ; Gauer, Jacob W. ; Chan, Edward ; Hsieh, Peggy ; Weninger, Keith R. ; Erie, Dorothy A.</creator><creatorcontrib>Bradford, Kira C. ; Wilkins, Hunter ; Hao, Pengyu ; Li, Zimeng M. ; Wang, Bangchen ; Burke, Dan ; Wu, Dong ; Smith, Austin E. ; Spaller, Logan ; Du, Chunwei ; Gauer, Jacob W. ; Chan, Edward ; Hsieh, Peggy ; Weninger, Keith R. ; Erie, Dorothy A.</creatorcontrib><description>DNA mismatch repair (MMR) corrects errors that occur during DNA replication. In humans, mutations in the proteins MutSα and MutLα that initiate MMR cause Lynch syndrome, the most common hereditary cancer. MutSα surveilles the DNA, and upon recognition of a replication error it undergoes adenosine triphosphate-dependent conformational changes and recruits MutLα. Subsequently, proliferating cell nuclear antigen (PCNA) activates MutLα to nick the error-containing strand to allow excision and resynthesis. The structure–function properties of these obligate MutSα–MutLα complexes remain mostly unexplored in higher eukaryotes, and models are predominately based on studies of prokaryotic proteins. Here, we utilize atomic force microscopy (AFM) coupled with other methods to reveal time- and concentration-dependent stoichiometries and conformations of assembling human MutSα–MutLα–DNA complexes.We find that they assemble into multimeric complexes comprising three to eight proteins around a mismatch on DNA. On the timescale of a few minutes, these complexes rearrange, folding and compacting the DNA. These observations contrast with dominant models of MMR initiation that envision diffusive MutS–MutL complexes that move away from the mismatch. Our results suggest MutSα localizes MutLα near the mismatch and promotes DNA configurations that could enhance MMR efficiency by facilitating MutLα nicking the DNA at multiple sites around the mismatch. In addition, such complexes may also protect the mismatch region from nucleosome reassembly until repair occurs, and they could potentially remodel adjacent nucleosomes.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1918519117</identifier><identifier>PMID: 32586954</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Adenosine triphosphate ; Adenosine Triphosphate - metabolism ; Antigens ; Atomic force microscopy ; ATP ; Biological Sciences ; Compacting ; Deoxyribonucleic acid ; DNA ; DNA - chemistry ; DNA - genetics ; DNA - metabolism ; DNA biosynthesis ; DNA Mismatch Repair ; DNA repair ; DNA-Binding Proteins - chemistry ; DNA-Binding Proteins - metabolism ; Eukaryotes ; Humans ; Mismatch repair ; Multiprotein Complexes - metabolism ; Mutation ; MutL Proteins - chemistry ; MutL Proteins - metabolism ; MutS Homolog 2 Protein - chemistry ; MutS Homolog 2 Protein - metabolism ; Nicking endonuclease ; Nucleic Acid Conformation ; Nucleosomes ; Nucleosomes - metabolism ; Proliferating cell nuclear antigen ; Protein Folding ; Protein Multimerization ; Proteins ; Repair ; Replication ; Stoichiometry ; Structure-function relationships ; Time dependence</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2020-07, Vol.117 (28), p.16302-16312</ispartof><rights>Copyright National Academy of Sciences Jul 14, 2020</rights><rights>2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c513t-bef4298b803e2ab4570aebe560bd2709fcc8977ebe7c959cab9d42b91444b5953</citedby><cites>FETCH-LOGICAL-c513t-bef4298b803e2ab4570aebe560bd2709fcc8977ebe7c959cab9d42b91444b5953</cites><orcidid>0000-0002-0942-7858 ; 0000-0002-8652-5873</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26935221$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26935221$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32586954$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bradford, Kira C.</creatorcontrib><creatorcontrib>Wilkins, Hunter</creatorcontrib><creatorcontrib>Hao, Pengyu</creatorcontrib><creatorcontrib>Li, Zimeng M.</creatorcontrib><creatorcontrib>Wang, Bangchen</creatorcontrib><creatorcontrib>Burke, Dan</creatorcontrib><creatorcontrib>Wu, Dong</creatorcontrib><creatorcontrib>Smith, Austin E.</creatorcontrib><creatorcontrib>Spaller, Logan</creatorcontrib><creatorcontrib>Du, Chunwei</creatorcontrib><creatorcontrib>Gauer, Jacob W.</creatorcontrib><creatorcontrib>Chan, Edward</creatorcontrib><creatorcontrib>Hsieh, Peggy</creatorcontrib><creatorcontrib>Weninger, Keith R.</creatorcontrib><creatorcontrib>Erie, Dorothy A.</creatorcontrib><title>Dynamic human MutSα–MutLα complexes compact mismatched DNA</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>DNA mismatch repair (MMR) corrects errors that occur during DNA replication. In humans, mutations in the proteins MutSα and MutLα that initiate MMR cause Lynch syndrome, the most common hereditary cancer. MutSα surveilles the DNA, and upon recognition of a replication error it undergoes adenosine triphosphate-dependent conformational changes and recruits MutLα. Subsequently, proliferating cell nuclear antigen (PCNA) activates MutLα to nick the error-containing strand to allow excision and resynthesis. The structure–function properties of these obligate MutSα–MutLα complexes remain mostly unexplored in higher eukaryotes, and models are predominately based on studies of prokaryotic proteins. Here, we utilize atomic force microscopy (AFM) coupled with other methods to reveal time- and concentration-dependent stoichiometries and conformations of assembling human MutSα–MutLα–DNA complexes.We find that they assemble into multimeric complexes comprising three to eight proteins around a mismatch on DNA. On the timescale of a few minutes, these complexes rearrange, folding and compacting the DNA. These observations contrast with dominant models of MMR initiation that envision diffusive MutS–MutL complexes that move away from the mismatch. Our results suggest MutSα localizes MutLα near the mismatch and promotes DNA configurations that could enhance MMR efficiency by facilitating MutLα nicking the DNA at multiple sites around the mismatch. In addition, such complexes may also protect the mismatch region from nucleosome reassembly until repair occurs, and they could potentially remodel adjacent nucleosomes.</description><subject>Adenosine triphosphate</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>Antigens</subject><subject>Atomic force microscopy</subject><subject>ATP</subject><subject>Biological Sciences</subject><subject>Compacting</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA - chemistry</subject><subject>DNA - genetics</subject><subject>DNA - metabolism</subject><subject>DNA biosynthesis</subject><subject>DNA Mismatch Repair</subject><subject>DNA repair</subject><subject>DNA-Binding Proteins - chemistry</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Eukaryotes</subject><subject>Humans</subject><subject>Mismatch repair</subject><subject>Multiprotein Complexes - metabolism</subject><subject>Mutation</subject><subject>MutL Proteins - chemistry</subject><subject>MutL Proteins - metabolism</subject><subject>MutS Homolog 2 Protein - chemistry</subject><subject>MutS Homolog 2 Protein - metabolism</subject><subject>Nicking endonuclease</subject><subject>Nucleic Acid Conformation</subject><subject>Nucleosomes</subject><subject>Nucleosomes - metabolism</subject><subject>Proliferating cell nuclear antigen</subject><subject>Protein Folding</subject><subject>Protein Multimerization</subject><subject>Proteins</subject><subject>Repair</subject><subject>Replication</subject><subject>Stoichiometry</subject><subject>Structure-function relationships</subject><subject>Time dependence</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkTlOBDEQRS0EgmGJiUAtkZA0lLe2nSAhdmmAAIgt2-NhetTL0O5GkHEHTsJFOAQnwTAwLImr5Hr-rq-P0DqGHQyC7k4qE3awwpLHA4s51MOgcJoxBfOoB0BEKhlhS2g5hDEAKC5hES1RwmWmOOuhvcPHypS5S0ZdaarkvGuvXl_enp5j0399SVxdTgr_4MNnZ1yblHkoTetGfpAcXuyvooWhKYJf-6or6Ob46PrgNO1fnpwd7PdTxzFtU-uHjChpJVBPjGVcgPHW8wzsgAhQQ-ekEiJeCae4csaqASNWYcaY5YrTFbQ31Z10tvQD56u2MYWeNHlpmkddm1z_nVT5SN_W91rQTEa3UWD7S6Cp7zofWh2NOF8UpvJ1FzRhWGIC7POvrX_ouO6aKtqLFOEADGgWqd0p5Zo6hMYPZ8tg0B_Z6I9s9E828cXmbw8z_juMCGxMgXFo62Y2J5minBBM3wFtSJai</recordid><startdate>20200714</startdate><enddate>20200714</enddate><creator>Bradford, Kira C.</creator><creator>Wilkins, Hunter</creator><creator>Hao, Pengyu</creator><creator>Li, Zimeng M.</creator><creator>Wang, Bangchen</creator><creator>Burke, Dan</creator><creator>Wu, Dong</creator><creator>Smith, Austin E.</creator><creator>Spaller, Logan</creator><creator>Du, Chunwei</creator><creator>Gauer, Jacob W.</creator><creator>Chan, Edward</creator><creator>Hsieh, Peggy</creator><creator>Weninger, Keith R.</creator><creator>Erie, Dorothy A.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0942-7858</orcidid><orcidid>https://orcid.org/0000-0002-8652-5873</orcidid></search><sort><creationdate>20200714</creationdate><title>Dynamic human MutSα–MutLα complexes compact mismatched DNA</title><author>Bradford, Kira C. ; Wilkins, Hunter ; Hao, Pengyu ; Li, Zimeng M. ; Wang, Bangchen ; Burke, Dan ; Wu, Dong ; Smith, Austin E. ; Spaller, Logan ; Du, Chunwei ; Gauer, Jacob W. ; Chan, Edward ; Hsieh, Peggy ; Weninger, Keith R. ; Erie, Dorothy A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c513t-bef4298b803e2ab4570aebe560bd2709fcc8977ebe7c959cab9d42b91444b5953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adenosine triphosphate</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>Antigens</topic><topic>Atomic force microscopy</topic><topic>ATP</topic><topic>Biological Sciences</topic><topic>Compacting</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA - chemistry</topic><topic>DNA - genetics</topic><topic>DNA - metabolism</topic><topic>DNA biosynthesis</topic><topic>DNA Mismatch Repair</topic><topic>DNA repair</topic><topic>DNA-Binding Proteins - chemistry</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Eukaryotes</topic><topic>Humans</topic><topic>Mismatch repair</topic><topic>Multiprotein Complexes - metabolism</topic><topic>Mutation</topic><topic>MutL Proteins - chemistry</topic><topic>MutL Proteins - metabolism</topic><topic>MutS Homolog 2 Protein - chemistry</topic><topic>MutS Homolog 2 Protein - metabolism</topic><topic>Nicking endonuclease</topic><topic>Nucleic Acid Conformation</topic><topic>Nucleosomes</topic><topic>Nucleosomes - metabolism</topic><topic>Proliferating cell nuclear antigen</topic><topic>Protein Folding</topic><topic>Protein Multimerization</topic><topic>Proteins</topic><topic>Repair</topic><topic>Replication</topic><topic>Stoichiometry</topic><topic>Structure-function relationships</topic><topic>Time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bradford, Kira C.</creatorcontrib><creatorcontrib>Wilkins, Hunter</creatorcontrib><creatorcontrib>Hao, Pengyu</creatorcontrib><creatorcontrib>Li, Zimeng M.</creatorcontrib><creatorcontrib>Wang, Bangchen</creatorcontrib><creatorcontrib>Burke, Dan</creatorcontrib><creatorcontrib>Wu, Dong</creatorcontrib><creatorcontrib>Smith, Austin E.</creatorcontrib><creatorcontrib>Spaller, Logan</creatorcontrib><creatorcontrib>Du, Chunwei</creatorcontrib><creatorcontrib>Gauer, Jacob W.</creatorcontrib><creatorcontrib>Chan, Edward</creatorcontrib><creatorcontrib>Hsieh, Peggy</creatorcontrib><creatorcontrib>Weninger, Keith R.</creatorcontrib><creatorcontrib>Erie, Dorothy A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bradford, Kira C.</au><au>Wilkins, Hunter</au><au>Hao, Pengyu</au><au>Li, Zimeng M.</au><au>Wang, Bangchen</au><au>Burke, Dan</au><au>Wu, Dong</au><au>Smith, Austin E.</au><au>Spaller, Logan</au><au>Du, Chunwei</au><au>Gauer, Jacob W.</au><au>Chan, Edward</au><au>Hsieh, Peggy</au><au>Weninger, Keith R.</au><au>Erie, Dorothy A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic human MutSα–MutLα complexes compact mismatched DNA</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2020-07-14</date><risdate>2020</risdate><volume>117</volume><issue>28</issue><spage>16302</spage><epage>16312</epage><pages>16302-16312</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>DNA mismatch repair (MMR) corrects errors that occur during DNA replication. In humans, mutations in the proteins MutSα and MutLα that initiate MMR cause Lynch syndrome, the most common hereditary cancer. MutSα surveilles the DNA, and upon recognition of a replication error it undergoes adenosine triphosphate-dependent conformational changes and recruits MutLα. Subsequently, proliferating cell nuclear antigen (PCNA) activates MutLα to nick the error-containing strand to allow excision and resynthesis. The structure–function properties of these obligate MutSα–MutLα complexes remain mostly unexplored in higher eukaryotes, and models are predominately based on studies of prokaryotic proteins. Here, we utilize atomic force microscopy (AFM) coupled with other methods to reveal time- and concentration-dependent stoichiometries and conformations of assembling human MutSα–MutLα–DNA complexes.We find that they assemble into multimeric complexes comprising three to eight proteins around a mismatch on DNA. On the timescale of a few minutes, these complexes rearrange, folding and compacting the DNA. These observations contrast with dominant models of MMR initiation that envision diffusive MutS–MutL complexes that move away from the mismatch. Our results suggest MutSα localizes MutLα near the mismatch and promotes DNA configurations that could enhance MMR efficiency by facilitating MutLα nicking the DNA at multiple sites around the mismatch. In addition, such complexes may also protect the mismatch region from nucleosome reassembly until repair occurs, and they could potentially remodel adjacent nucleosomes.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>32586954</pmid><doi>10.1073/pnas.1918519117</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0942-7858</orcidid><orcidid>https://orcid.org/0000-0002-8652-5873</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2020-07, Vol.117 (28), p.16302-16312 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7368325 |
source | JSTOR Archival Journals and Primary Sources Collection; PubMed Central |
subjects | Adenosine triphosphate Adenosine Triphosphate - metabolism Antigens Atomic force microscopy ATP Biological Sciences Compacting Deoxyribonucleic acid DNA DNA - chemistry DNA - genetics DNA - metabolism DNA biosynthesis DNA Mismatch Repair DNA repair DNA-Binding Proteins - chemistry DNA-Binding Proteins - metabolism Eukaryotes Humans Mismatch repair Multiprotein Complexes - metabolism Mutation MutL Proteins - chemistry MutL Proteins - metabolism MutS Homolog 2 Protein - chemistry MutS Homolog 2 Protein - metabolism Nicking endonuclease Nucleic Acid Conformation Nucleosomes Nucleosomes - metabolism Proliferating cell nuclear antigen Protein Folding Protein Multimerization Proteins Repair Replication Stoichiometry Structure-function relationships Time dependence |
title | Dynamic human MutSα–MutLα complexes compact mismatched DNA |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A33%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20human%20MutS%CE%B1%E2%80%93MutL%CE%B1%20complexes%20compact%20mismatched%20DNA&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Bradford,%20Kira%20C.&rft.date=2020-07-14&rft.volume=117&rft.issue=28&rft.spage=16302&rft.epage=16312&rft.pages=16302-16312&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1918519117&rft_dat=%3Cjstor_pubme%3E26935221%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c513t-bef4298b803e2ab4570aebe560bd2709fcc8977ebe7c959cab9d42b91444b5953%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2425004036&rft_id=info:pmid/32586954&rft_jstor_id=26935221&rfr_iscdi=true |