Loading…

Dynamic human MutSα–MutLα complexes compact mismatched DNA

DNA mismatch repair (MMR) corrects errors that occur during DNA replication. In humans, mutations in the proteins MutSα and MutLα that initiate MMR cause Lynch syndrome, the most common hereditary cancer. MutSα surveilles the DNA, and upon recognition of a replication error it undergoes adenosine tr...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2020-07, Vol.117 (28), p.16302-16312
Main Authors: Bradford, Kira C., Wilkins, Hunter, Hao, Pengyu, Li, Zimeng M., Wang, Bangchen, Burke, Dan, Wu, Dong, Smith, Austin E., Spaller, Logan, Du, Chunwei, Gauer, Jacob W., Chan, Edward, Hsieh, Peggy, Weninger, Keith R., Erie, Dorothy A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c513t-bef4298b803e2ab4570aebe560bd2709fcc8977ebe7c959cab9d42b91444b5953
cites cdi_FETCH-LOGICAL-c513t-bef4298b803e2ab4570aebe560bd2709fcc8977ebe7c959cab9d42b91444b5953
container_end_page 16312
container_issue 28
container_start_page 16302
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 117
creator Bradford, Kira C.
Wilkins, Hunter
Hao, Pengyu
Li, Zimeng M.
Wang, Bangchen
Burke, Dan
Wu, Dong
Smith, Austin E.
Spaller, Logan
Du, Chunwei
Gauer, Jacob W.
Chan, Edward
Hsieh, Peggy
Weninger, Keith R.
Erie, Dorothy A.
description DNA mismatch repair (MMR) corrects errors that occur during DNA replication. In humans, mutations in the proteins MutSα and MutLα that initiate MMR cause Lynch syndrome, the most common hereditary cancer. MutSα surveilles the DNA, and upon recognition of a replication error it undergoes adenosine triphosphate-dependent conformational changes and recruits MutLα. Subsequently, proliferating cell nuclear antigen (PCNA) activates MutLα to nick the error-containing strand to allow excision and resynthesis. The structure–function properties of these obligate MutSα–MutLα complexes remain mostly unexplored in higher eukaryotes, and models are predominately based on studies of prokaryotic proteins. Here, we utilize atomic force microscopy (AFM) coupled with other methods to reveal time- and concentration-dependent stoichiometries and conformations of assembling human MutSα–MutLα–DNA complexes.We find that they assemble into multimeric complexes comprising three to eight proteins around a mismatch on DNA. On the timescale of a few minutes, these complexes rearrange, folding and compacting the DNA. These observations contrast with dominant models of MMR initiation that envision diffusive MutS–MutL complexes that move away from the mismatch. Our results suggest MutSα localizes MutLα near the mismatch and promotes DNA configurations that could enhance MMR efficiency by facilitating MutLα nicking the DNA at multiple sites around the mismatch. In addition, such complexes may also protect the mismatch region from nucleosome reassembly until repair occurs, and they could potentially remodel adjacent nucleosomes.
doi_str_mv 10.1073/pnas.1918519117
format article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7368325</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26935221</jstor_id><sourcerecordid>26935221</sourcerecordid><originalsourceid>FETCH-LOGICAL-c513t-bef4298b803e2ab4570aebe560bd2709fcc8977ebe7c959cab9d42b91444b5953</originalsourceid><addsrcrecordid>eNpdkTlOBDEQRS0EgmGJiUAtkZA0lLe2nSAhdmmAAIgt2-NhetTL0O5GkHEHTsJFOAQnwTAwLImr5Hr-rq-P0DqGHQyC7k4qE3awwpLHA4s51MOgcJoxBfOoB0BEKhlhS2g5hDEAKC5hES1RwmWmOOuhvcPHypS5S0ZdaarkvGuvXl_enp5j0399SVxdTgr_4MNnZ1yblHkoTetGfpAcXuyvooWhKYJf-6or6Ob46PrgNO1fnpwd7PdTxzFtU-uHjChpJVBPjGVcgPHW8wzsgAhQQ-ekEiJeCae4csaqASNWYcaY5YrTFbQ31Z10tvQD56u2MYWeNHlpmkddm1z_nVT5SN_W91rQTEa3UWD7S6Cp7zofWh2NOF8UpvJ1FzRhWGIC7POvrX_ouO6aKtqLFOEADGgWqd0p5Zo6hMYPZ8tg0B_Z6I9s9E828cXmbw8z_juMCGxMgXFo62Y2J5minBBM3wFtSJai</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2425004036</pqid></control><display><type>article</type><title>Dynamic human MutSα–MutLα complexes compact mismatched DNA</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>PubMed Central</source><creator>Bradford, Kira C. ; Wilkins, Hunter ; Hao, Pengyu ; Li, Zimeng M. ; Wang, Bangchen ; Burke, Dan ; Wu, Dong ; Smith, Austin E. ; Spaller, Logan ; Du, Chunwei ; Gauer, Jacob W. ; Chan, Edward ; Hsieh, Peggy ; Weninger, Keith R. ; Erie, Dorothy A.</creator><creatorcontrib>Bradford, Kira C. ; Wilkins, Hunter ; Hao, Pengyu ; Li, Zimeng M. ; Wang, Bangchen ; Burke, Dan ; Wu, Dong ; Smith, Austin E. ; Spaller, Logan ; Du, Chunwei ; Gauer, Jacob W. ; Chan, Edward ; Hsieh, Peggy ; Weninger, Keith R. ; Erie, Dorothy A.</creatorcontrib><description>DNA mismatch repair (MMR) corrects errors that occur during DNA replication. In humans, mutations in the proteins MutSα and MutLα that initiate MMR cause Lynch syndrome, the most common hereditary cancer. MutSα surveilles the DNA, and upon recognition of a replication error it undergoes adenosine triphosphate-dependent conformational changes and recruits MutLα. Subsequently, proliferating cell nuclear antigen (PCNA) activates MutLα to nick the error-containing strand to allow excision and resynthesis. The structure–function properties of these obligate MutSα–MutLα complexes remain mostly unexplored in higher eukaryotes, and models are predominately based on studies of prokaryotic proteins. Here, we utilize atomic force microscopy (AFM) coupled with other methods to reveal time- and concentration-dependent stoichiometries and conformations of assembling human MutSα–MutLα–DNA complexes.We find that they assemble into multimeric complexes comprising three to eight proteins around a mismatch on DNA. On the timescale of a few minutes, these complexes rearrange, folding and compacting the DNA. These observations contrast with dominant models of MMR initiation that envision diffusive MutS–MutL complexes that move away from the mismatch. Our results suggest MutSα localizes MutLα near the mismatch and promotes DNA configurations that could enhance MMR efficiency by facilitating MutLα nicking the DNA at multiple sites around the mismatch. In addition, such complexes may also protect the mismatch region from nucleosome reassembly until repair occurs, and they could potentially remodel adjacent nucleosomes.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1918519117</identifier><identifier>PMID: 32586954</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Adenosine triphosphate ; Adenosine Triphosphate - metabolism ; Antigens ; Atomic force microscopy ; ATP ; Biological Sciences ; Compacting ; Deoxyribonucleic acid ; DNA ; DNA - chemistry ; DNA - genetics ; DNA - metabolism ; DNA biosynthesis ; DNA Mismatch Repair ; DNA repair ; DNA-Binding Proteins - chemistry ; DNA-Binding Proteins - metabolism ; Eukaryotes ; Humans ; Mismatch repair ; Multiprotein Complexes - metabolism ; Mutation ; MutL Proteins - chemistry ; MutL Proteins - metabolism ; MutS Homolog 2 Protein - chemistry ; MutS Homolog 2 Protein - metabolism ; Nicking endonuclease ; Nucleic Acid Conformation ; Nucleosomes ; Nucleosomes - metabolism ; Proliferating cell nuclear antigen ; Protein Folding ; Protein Multimerization ; Proteins ; Repair ; Replication ; Stoichiometry ; Structure-function relationships ; Time dependence</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2020-07, Vol.117 (28), p.16302-16312</ispartof><rights>Copyright National Academy of Sciences Jul 14, 2020</rights><rights>2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c513t-bef4298b803e2ab4570aebe560bd2709fcc8977ebe7c959cab9d42b91444b5953</citedby><cites>FETCH-LOGICAL-c513t-bef4298b803e2ab4570aebe560bd2709fcc8977ebe7c959cab9d42b91444b5953</cites><orcidid>0000-0002-0942-7858 ; 0000-0002-8652-5873</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26935221$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26935221$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32586954$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bradford, Kira C.</creatorcontrib><creatorcontrib>Wilkins, Hunter</creatorcontrib><creatorcontrib>Hao, Pengyu</creatorcontrib><creatorcontrib>Li, Zimeng M.</creatorcontrib><creatorcontrib>Wang, Bangchen</creatorcontrib><creatorcontrib>Burke, Dan</creatorcontrib><creatorcontrib>Wu, Dong</creatorcontrib><creatorcontrib>Smith, Austin E.</creatorcontrib><creatorcontrib>Spaller, Logan</creatorcontrib><creatorcontrib>Du, Chunwei</creatorcontrib><creatorcontrib>Gauer, Jacob W.</creatorcontrib><creatorcontrib>Chan, Edward</creatorcontrib><creatorcontrib>Hsieh, Peggy</creatorcontrib><creatorcontrib>Weninger, Keith R.</creatorcontrib><creatorcontrib>Erie, Dorothy A.</creatorcontrib><title>Dynamic human MutSα–MutLα complexes compact mismatched DNA</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>DNA mismatch repair (MMR) corrects errors that occur during DNA replication. In humans, mutations in the proteins MutSα and MutLα that initiate MMR cause Lynch syndrome, the most common hereditary cancer. MutSα surveilles the DNA, and upon recognition of a replication error it undergoes adenosine triphosphate-dependent conformational changes and recruits MutLα. Subsequently, proliferating cell nuclear antigen (PCNA) activates MutLα to nick the error-containing strand to allow excision and resynthesis. The structure–function properties of these obligate MutSα–MutLα complexes remain mostly unexplored in higher eukaryotes, and models are predominately based on studies of prokaryotic proteins. Here, we utilize atomic force microscopy (AFM) coupled with other methods to reveal time- and concentration-dependent stoichiometries and conformations of assembling human MutSα–MutLα–DNA complexes.We find that they assemble into multimeric complexes comprising three to eight proteins around a mismatch on DNA. On the timescale of a few minutes, these complexes rearrange, folding and compacting the DNA. These observations contrast with dominant models of MMR initiation that envision diffusive MutS–MutL complexes that move away from the mismatch. Our results suggest MutSα localizes MutLα near the mismatch and promotes DNA configurations that could enhance MMR efficiency by facilitating MutLα nicking the DNA at multiple sites around the mismatch. In addition, such complexes may also protect the mismatch region from nucleosome reassembly until repair occurs, and they could potentially remodel adjacent nucleosomes.</description><subject>Adenosine triphosphate</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>Antigens</subject><subject>Atomic force microscopy</subject><subject>ATP</subject><subject>Biological Sciences</subject><subject>Compacting</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA - chemistry</subject><subject>DNA - genetics</subject><subject>DNA - metabolism</subject><subject>DNA biosynthesis</subject><subject>DNA Mismatch Repair</subject><subject>DNA repair</subject><subject>DNA-Binding Proteins - chemistry</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Eukaryotes</subject><subject>Humans</subject><subject>Mismatch repair</subject><subject>Multiprotein Complexes - metabolism</subject><subject>Mutation</subject><subject>MutL Proteins - chemistry</subject><subject>MutL Proteins - metabolism</subject><subject>MutS Homolog 2 Protein - chemistry</subject><subject>MutS Homolog 2 Protein - metabolism</subject><subject>Nicking endonuclease</subject><subject>Nucleic Acid Conformation</subject><subject>Nucleosomes</subject><subject>Nucleosomes - metabolism</subject><subject>Proliferating cell nuclear antigen</subject><subject>Protein Folding</subject><subject>Protein Multimerization</subject><subject>Proteins</subject><subject>Repair</subject><subject>Replication</subject><subject>Stoichiometry</subject><subject>Structure-function relationships</subject><subject>Time dependence</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkTlOBDEQRS0EgmGJiUAtkZA0lLe2nSAhdmmAAIgt2-NhetTL0O5GkHEHTsJFOAQnwTAwLImr5Hr-rq-P0DqGHQyC7k4qE3awwpLHA4s51MOgcJoxBfOoB0BEKhlhS2g5hDEAKC5hES1RwmWmOOuhvcPHypS5S0ZdaarkvGuvXl_enp5j0399SVxdTgr_4MNnZ1yblHkoTetGfpAcXuyvooWhKYJf-6or6Ob46PrgNO1fnpwd7PdTxzFtU-uHjChpJVBPjGVcgPHW8wzsgAhQQ-ekEiJeCae4csaqASNWYcaY5YrTFbQ31Z10tvQD56u2MYWeNHlpmkddm1z_nVT5SN_W91rQTEa3UWD7S6Cp7zofWh2NOF8UpvJ1FzRhWGIC7POvrX_ouO6aKtqLFOEADGgWqd0p5Zo6hMYPZ8tg0B_Z6I9s9E828cXmbw8z_juMCGxMgXFo62Y2J5minBBM3wFtSJai</recordid><startdate>20200714</startdate><enddate>20200714</enddate><creator>Bradford, Kira C.</creator><creator>Wilkins, Hunter</creator><creator>Hao, Pengyu</creator><creator>Li, Zimeng M.</creator><creator>Wang, Bangchen</creator><creator>Burke, Dan</creator><creator>Wu, Dong</creator><creator>Smith, Austin E.</creator><creator>Spaller, Logan</creator><creator>Du, Chunwei</creator><creator>Gauer, Jacob W.</creator><creator>Chan, Edward</creator><creator>Hsieh, Peggy</creator><creator>Weninger, Keith R.</creator><creator>Erie, Dorothy A.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0942-7858</orcidid><orcidid>https://orcid.org/0000-0002-8652-5873</orcidid></search><sort><creationdate>20200714</creationdate><title>Dynamic human MutSα–MutLα complexes compact mismatched DNA</title><author>Bradford, Kira C. ; Wilkins, Hunter ; Hao, Pengyu ; Li, Zimeng M. ; Wang, Bangchen ; Burke, Dan ; Wu, Dong ; Smith, Austin E. ; Spaller, Logan ; Du, Chunwei ; Gauer, Jacob W. ; Chan, Edward ; Hsieh, Peggy ; Weninger, Keith R. ; Erie, Dorothy A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c513t-bef4298b803e2ab4570aebe560bd2709fcc8977ebe7c959cab9d42b91444b5953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adenosine triphosphate</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>Antigens</topic><topic>Atomic force microscopy</topic><topic>ATP</topic><topic>Biological Sciences</topic><topic>Compacting</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA - chemistry</topic><topic>DNA - genetics</topic><topic>DNA - metabolism</topic><topic>DNA biosynthesis</topic><topic>DNA Mismatch Repair</topic><topic>DNA repair</topic><topic>DNA-Binding Proteins - chemistry</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Eukaryotes</topic><topic>Humans</topic><topic>Mismatch repair</topic><topic>Multiprotein Complexes - metabolism</topic><topic>Mutation</topic><topic>MutL Proteins - chemistry</topic><topic>MutL Proteins - metabolism</topic><topic>MutS Homolog 2 Protein - chemistry</topic><topic>MutS Homolog 2 Protein - metabolism</topic><topic>Nicking endonuclease</topic><topic>Nucleic Acid Conformation</topic><topic>Nucleosomes</topic><topic>Nucleosomes - metabolism</topic><topic>Proliferating cell nuclear antigen</topic><topic>Protein Folding</topic><topic>Protein Multimerization</topic><topic>Proteins</topic><topic>Repair</topic><topic>Replication</topic><topic>Stoichiometry</topic><topic>Structure-function relationships</topic><topic>Time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bradford, Kira C.</creatorcontrib><creatorcontrib>Wilkins, Hunter</creatorcontrib><creatorcontrib>Hao, Pengyu</creatorcontrib><creatorcontrib>Li, Zimeng M.</creatorcontrib><creatorcontrib>Wang, Bangchen</creatorcontrib><creatorcontrib>Burke, Dan</creatorcontrib><creatorcontrib>Wu, Dong</creatorcontrib><creatorcontrib>Smith, Austin E.</creatorcontrib><creatorcontrib>Spaller, Logan</creatorcontrib><creatorcontrib>Du, Chunwei</creatorcontrib><creatorcontrib>Gauer, Jacob W.</creatorcontrib><creatorcontrib>Chan, Edward</creatorcontrib><creatorcontrib>Hsieh, Peggy</creatorcontrib><creatorcontrib>Weninger, Keith R.</creatorcontrib><creatorcontrib>Erie, Dorothy A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bradford, Kira C.</au><au>Wilkins, Hunter</au><au>Hao, Pengyu</au><au>Li, Zimeng M.</au><au>Wang, Bangchen</au><au>Burke, Dan</au><au>Wu, Dong</au><au>Smith, Austin E.</au><au>Spaller, Logan</au><au>Du, Chunwei</au><au>Gauer, Jacob W.</au><au>Chan, Edward</au><au>Hsieh, Peggy</au><au>Weninger, Keith R.</au><au>Erie, Dorothy A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic human MutSα–MutLα complexes compact mismatched DNA</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2020-07-14</date><risdate>2020</risdate><volume>117</volume><issue>28</issue><spage>16302</spage><epage>16312</epage><pages>16302-16312</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>DNA mismatch repair (MMR) corrects errors that occur during DNA replication. In humans, mutations in the proteins MutSα and MutLα that initiate MMR cause Lynch syndrome, the most common hereditary cancer. MutSα surveilles the DNA, and upon recognition of a replication error it undergoes adenosine triphosphate-dependent conformational changes and recruits MutLα. Subsequently, proliferating cell nuclear antigen (PCNA) activates MutLα to nick the error-containing strand to allow excision and resynthesis. The structure–function properties of these obligate MutSα–MutLα complexes remain mostly unexplored in higher eukaryotes, and models are predominately based on studies of prokaryotic proteins. Here, we utilize atomic force microscopy (AFM) coupled with other methods to reveal time- and concentration-dependent stoichiometries and conformations of assembling human MutSα–MutLα–DNA complexes.We find that they assemble into multimeric complexes comprising three to eight proteins around a mismatch on DNA. On the timescale of a few minutes, these complexes rearrange, folding and compacting the DNA. These observations contrast with dominant models of MMR initiation that envision diffusive MutS–MutL complexes that move away from the mismatch. Our results suggest MutSα localizes MutLα near the mismatch and promotes DNA configurations that could enhance MMR efficiency by facilitating MutLα nicking the DNA at multiple sites around the mismatch. In addition, such complexes may also protect the mismatch region from nucleosome reassembly until repair occurs, and they could potentially remodel adjacent nucleosomes.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>32586954</pmid><doi>10.1073/pnas.1918519117</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0942-7858</orcidid><orcidid>https://orcid.org/0000-0002-8652-5873</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2020-07, Vol.117 (28), p.16302-16312
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7368325
source JSTOR Archival Journals and Primary Sources Collection; PubMed Central
subjects Adenosine triphosphate
Adenosine Triphosphate - metabolism
Antigens
Atomic force microscopy
ATP
Biological Sciences
Compacting
Deoxyribonucleic acid
DNA
DNA - chemistry
DNA - genetics
DNA - metabolism
DNA biosynthesis
DNA Mismatch Repair
DNA repair
DNA-Binding Proteins - chemistry
DNA-Binding Proteins - metabolism
Eukaryotes
Humans
Mismatch repair
Multiprotein Complexes - metabolism
Mutation
MutL Proteins - chemistry
MutL Proteins - metabolism
MutS Homolog 2 Protein - chemistry
MutS Homolog 2 Protein - metabolism
Nicking endonuclease
Nucleic Acid Conformation
Nucleosomes
Nucleosomes - metabolism
Proliferating cell nuclear antigen
Protein Folding
Protein Multimerization
Proteins
Repair
Replication
Stoichiometry
Structure-function relationships
Time dependence
title Dynamic human MutSα–MutLα complexes compact mismatched DNA
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A33%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20human%20MutS%CE%B1%E2%80%93MutL%CE%B1%20complexes%20compact%20mismatched%20DNA&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Bradford,%20Kira%20C.&rft.date=2020-07-14&rft.volume=117&rft.issue=28&rft.spage=16302&rft.epage=16312&rft.pages=16302-16312&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1918519117&rft_dat=%3Cjstor_pubme%3E26935221%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c513t-bef4298b803e2ab4570aebe560bd2709fcc8977ebe7c959cab9d42b91444b5953%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2425004036&rft_id=info:pmid/32586954&rft_jstor_id=26935221&rfr_iscdi=true