Loading…
Nicotinamide Phosphoribosyltransferase (Nampt)/Nicotinamide Adenine Dinucleotide (NAD) Axis Suppresses Atrial Fibrillation by Modulating the Calcium Handling Pathway
Aging and obesity are the most prominent risk factors for onset of atrial fibrillation (AF). Nicotinamide phosphoribosyltransferase (Nampt) is the rate-limiting enzyme that catalyzes nicotinamide adenine dinucleotide (NAD) activity. Nampt and NAD are essential for maintenance of cellular redox homeo...
Saved in:
Published in: | International journal of molecular sciences 2020-06, Vol.21 (13), p.4655 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Aging and obesity are the most prominent risk factors for onset of atrial fibrillation (AF). Nicotinamide phosphoribosyltransferase (Nampt) is the rate-limiting enzyme that catalyzes nicotinamide adenine dinucleotide (NAD) activity. Nampt and NAD are essential for maintenance of cellular redox homeostasis and modulation of cellular metabolism, and their expression levels decrease with aging and obesity. However, a role for Nampt in AF is unknown. The present study aims to test whether there is a role of Nampt/NAD axis in the pathogenesis of obesity-induced AF. Male C57BL/6J (WT) mice and heterozygous Nampt knockout (NKO) mice were fed with a normal chow diet (ND) or a high-fat diet (HFD). Electrophysiological study showed that AF inducibility was significantly increased in WT+HFD, NKO+ND, and NKO+HFD mice compared with WT+ND mice. AF duration was significantly longer in WT+HFD and NKO+ND mice and further prolonged in NKO+HFD mice compared with WT+ND mice and the calcium handling pathway was altered on molecular level. Also, treatment with nicotinamide riboside, a NAD precursor, partially restored the HFD-induced AF perpetuation. Overall, this work demonstrates that partially deletion of Nampt facilitated HFD-induced AF through increased diastolic calcium leaks. The Nampt/NAD axis may be a potent therapeutic target for AF. |
---|---|
ISSN: | 1422-0067 1661-6596 1422-0067 |
DOI: | 10.3390/ijms21134655 |