Loading…

Phase Asymmetry Ultrasound Despeckling With Fractional Anisotropic Diffusion and Total Variation

We propose an ultrasound speckle filtering method for not only preserving various edge features but also filtering tissue-dependent complex speckle noises in ultrasound images. The key idea is to detect these various edges using a phase congruence-based edge significance measure called phase asymmet...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on image processing 2020-01, Vol.29, p.2845-2859
Main Authors: Mei, Kunqiang, Hu, Bin, Fei, Baowei, Qin, Binjie
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c402t-2ca045ecf106e26e7de7b9627aaf1e3bcb920ddc3cbac6b263c7423220b214a43
cites cdi_FETCH-LOGICAL-c402t-2ca045ecf106e26e7de7b9627aaf1e3bcb920ddc3cbac6b263c7423220b214a43
container_end_page 2859
container_issue
container_start_page 2845
container_title IEEE transactions on image processing
container_volume 29
creator Mei, Kunqiang
Hu, Bin
Fei, Baowei
Qin, Binjie
description We propose an ultrasound speckle filtering method for not only preserving various edge features but also filtering tissue-dependent complex speckle noises in ultrasound images. The key idea is to detect these various edges using a phase congruence-based edge significance measure called phase asymmetry (PAS), which is invariant to the intensity amplitude of edges and takes 0 in non-edge smooth regions and 1 at the idea step edge, while also taking intermediate values at slowly varying ramp edges. By leveraging the PAS metric in designing weighting coefficients to maintain a balance between fractional-order anisotropic diffusion and total variation (TV) filters in TV cost function, we propose a new fractional TV framework to not only achieve the best despeckling performance with ramp edge preservation but also reduce the staircase effect produced by integral-order filters. Then, we exploit the PAS metric in designing a new fractional-order diffusion coefficient to properly preserve low-contrast edges in diffusion filtering. Finally, different from fixed fractional-order diffusion filters, an adaptive fractional order is introduced based on the PAS metric to enhance various weak edges in the spatially transitional areas between objects. The proposed fractional TV model is minimized using the gradient descent method to obtain the final denoised image. The experimental results and real application of ultrasound breast image segmentation show that the proposed method outperforms other state-of-the-art ultrasound despeckling filters for both speckle reduction and feature preservation in terms of visual evaluation and quantitative indices. The best scores on feature similarity indices have achieved 0.867, 0.844 and 0.834 under three different levels of noise, while the best breast ultrasound segmentation accuracy in terms of the mean and median dice similarity coefficient are 96.25% and 96.15%, respectively.
doi_str_mv 10.1109/TIP.2019.2953361
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7370834</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8906234</ieee_id><sourcerecordid>2345512149</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-2ca045ecf106e26e7de7b9627aaf1e3bcb920ddc3cbac6b263c7423220b214a43</originalsourceid><addsrcrecordid>eNpdkctr3DAQxkVpaV69FwrB0Esu3owetlaXwJI0Dwg0h017VGV5nFVqW1vJLux_Hzm7XdqeJDS_7xvNfIR8pDCjFNT58u5hxoCqGVMF5yV9Qw6pEjQHEOxtukMhc0mFOiBHMT4DUFHQ8j054FQWlAk4JD8eViZitoibrsMhbLLHdggm-rGvsyuMa7Q_W9c_Zd_dsMqug7GD871ps0Xvoh-CXzubXbmmGWN6z0xSLf2Q6t9McGZiT8i7xrQRP-zOY_J4_WV5eZvff725u1zc51YAG3JmDYgCbUOhRFairFFWqmTSmIYir2ylGNS15bYytqxYya0UjDMGFaPCCH5MLra-67HqsLbYpzlavQ6uM2GjvXH630rvVvrJ_9aSS5jzyeBsZxD8rxHjoDsXLbat6dGPUbNpaXMBQiX083_osx9DWstEiSKtlr5SsKVs8DEGbPafoaCn-HSKT0_x6V18SXL69xB7wZ-8EvBpCzhE3JfnCsrUmL8AREGgYA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2345512149</pqid></control><display><type>article</type><title>Phase Asymmetry Ultrasound Despeckling With Fractional Anisotropic Diffusion and Total Variation</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Mei, Kunqiang ; Hu, Bin ; Fei, Baowei ; Qin, Binjie</creator><creatorcontrib>Mei, Kunqiang ; Hu, Bin ; Fei, Baowei ; Qin, Binjie</creatorcontrib><description>We propose an ultrasound speckle filtering method for not only preserving various edge features but also filtering tissue-dependent complex speckle noises in ultrasound images. The key idea is to detect these various edges using a phase congruence-based edge significance measure called phase asymmetry (PAS), which is invariant to the intensity amplitude of edges and takes 0 in non-edge smooth regions and 1 at the idea step edge, while also taking intermediate values at slowly varying ramp edges. By leveraging the PAS metric in designing weighting coefficients to maintain a balance between fractional-order anisotropic diffusion and total variation (TV) filters in TV cost function, we propose a new fractional TV framework to not only achieve the best despeckling performance with ramp edge preservation but also reduce the staircase effect produced by integral-order filters. Then, we exploit the PAS metric in designing a new fractional-order diffusion coefficient to properly preserve low-contrast edges in diffusion filtering. Finally, different from fixed fractional-order diffusion filters, an adaptive fractional order is introduced based on the PAS metric to enhance various weak edges in the spatially transitional areas between objects. The proposed fractional TV model is minimized using the gradient descent method to obtain the final denoised image. The experimental results and real application of ultrasound breast image segmentation show that the proposed method outperforms other state-of-the-art ultrasound despeckling filters for both speckle reduction and feature preservation in terms of visual evaluation and quantitative indices. The best scores on feature similarity indices have achieved 0.867, 0.844 and 0.834 under three different levels of noise, while the best breast ultrasound segmentation accuracy in terms of the mean and median dice similarity coefficient are 96.25% and 96.15%, respectively.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2019.2953361</identifier><identifier>PMID: 31751240</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Adaptive filters ; Anisotropic magnetoresistance ; Asymmetry ; Cost function ; Diffusion ; Diffusion coefficient ; edge detection ; Feature extraction ; fractional-order diffusion filter ; fractional-order TV filter ; image denoising ; Image detection ; Image edge detection ; Image segmentation ; Measurement ; Noise reduction ; phase asymmetry ; phase congruency ; Preservation ; Speckle ; speckle noise ; Ultrasonic imaging ; Ultrasonic methods ; Ultrasonic testing ; Ultrasound despeckling</subject><ispartof>IEEE transactions on image processing, 2020-01, Vol.29, p.2845-2859</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-2ca045ecf106e26e7de7b9627aaf1e3bcb920ddc3cbac6b263c7423220b214a43</citedby><cites>FETCH-LOGICAL-c402t-2ca045ecf106e26e7de7b9627aaf1e3bcb920ddc3cbac6b263c7423220b214a43</cites><orcidid>0000-0001-7445-1582</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8906234$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31751240$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mei, Kunqiang</creatorcontrib><creatorcontrib>Hu, Bin</creatorcontrib><creatorcontrib>Fei, Baowei</creatorcontrib><creatorcontrib>Qin, Binjie</creatorcontrib><title>Phase Asymmetry Ultrasound Despeckling With Fractional Anisotropic Diffusion and Total Variation</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>We propose an ultrasound speckle filtering method for not only preserving various edge features but also filtering tissue-dependent complex speckle noises in ultrasound images. The key idea is to detect these various edges using a phase congruence-based edge significance measure called phase asymmetry (PAS), which is invariant to the intensity amplitude of edges and takes 0 in non-edge smooth regions and 1 at the idea step edge, while also taking intermediate values at slowly varying ramp edges. By leveraging the PAS metric in designing weighting coefficients to maintain a balance between fractional-order anisotropic diffusion and total variation (TV) filters in TV cost function, we propose a new fractional TV framework to not only achieve the best despeckling performance with ramp edge preservation but also reduce the staircase effect produced by integral-order filters. Then, we exploit the PAS metric in designing a new fractional-order diffusion coefficient to properly preserve low-contrast edges in diffusion filtering. Finally, different from fixed fractional-order diffusion filters, an adaptive fractional order is introduced based on the PAS metric to enhance various weak edges in the spatially transitional areas between objects. The proposed fractional TV model is minimized using the gradient descent method to obtain the final denoised image. The experimental results and real application of ultrasound breast image segmentation show that the proposed method outperforms other state-of-the-art ultrasound despeckling filters for both speckle reduction and feature preservation in terms of visual evaluation and quantitative indices. The best scores on feature similarity indices have achieved 0.867, 0.844 and 0.834 under three different levels of noise, while the best breast ultrasound segmentation accuracy in terms of the mean and median dice similarity coefficient are 96.25% and 96.15%, respectively.</description><subject>Adaptive filters</subject><subject>Anisotropic magnetoresistance</subject><subject>Asymmetry</subject><subject>Cost function</subject><subject>Diffusion</subject><subject>Diffusion coefficient</subject><subject>edge detection</subject><subject>Feature extraction</subject><subject>fractional-order diffusion filter</subject><subject>fractional-order TV filter</subject><subject>image denoising</subject><subject>Image detection</subject><subject>Image edge detection</subject><subject>Image segmentation</subject><subject>Measurement</subject><subject>Noise reduction</subject><subject>phase asymmetry</subject><subject>phase congruency</subject><subject>Preservation</subject><subject>Speckle</subject><subject>speckle noise</subject><subject>Ultrasonic imaging</subject><subject>Ultrasonic methods</subject><subject>Ultrasonic testing</subject><subject>Ultrasound despeckling</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkctr3DAQxkVpaV69FwrB0Esu3owetlaXwJI0Dwg0h017VGV5nFVqW1vJLux_Hzm7XdqeJDS_7xvNfIR8pDCjFNT58u5hxoCqGVMF5yV9Qw6pEjQHEOxtukMhc0mFOiBHMT4DUFHQ8j054FQWlAk4JD8eViZitoibrsMhbLLHdggm-rGvsyuMa7Q_W9c_Zd_dsMqug7GD871ps0Xvoh-CXzubXbmmGWN6z0xSLf2Q6t9McGZiT8i7xrQRP-zOY_J4_WV5eZvff725u1zc51YAG3JmDYgCbUOhRFairFFWqmTSmIYir2ylGNS15bYytqxYya0UjDMGFaPCCH5MLra-67HqsLbYpzlavQ6uM2GjvXH630rvVvrJ_9aSS5jzyeBsZxD8rxHjoDsXLbat6dGPUbNpaXMBQiX083_osx9DWstEiSKtlr5SsKVs8DEGbPafoaCn-HSKT0_x6V18SXL69xB7wZ-8EvBpCzhE3JfnCsrUmL8AREGgYA</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Mei, Kunqiang</creator><creator>Hu, Bin</creator><creator>Fei, Baowei</creator><creator>Qin, Binjie</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7445-1582</orcidid></search><sort><creationdate>20200101</creationdate><title>Phase Asymmetry Ultrasound Despeckling With Fractional Anisotropic Diffusion and Total Variation</title><author>Mei, Kunqiang ; Hu, Bin ; Fei, Baowei ; Qin, Binjie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-2ca045ecf106e26e7de7b9627aaf1e3bcb920ddc3cbac6b263c7423220b214a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptive filters</topic><topic>Anisotropic magnetoresistance</topic><topic>Asymmetry</topic><topic>Cost function</topic><topic>Diffusion</topic><topic>Diffusion coefficient</topic><topic>edge detection</topic><topic>Feature extraction</topic><topic>fractional-order diffusion filter</topic><topic>fractional-order TV filter</topic><topic>image denoising</topic><topic>Image detection</topic><topic>Image edge detection</topic><topic>Image segmentation</topic><topic>Measurement</topic><topic>Noise reduction</topic><topic>phase asymmetry</topic><topic>phase congruency</topic><topic>Preservation</topic><topic>Speckle</topic><topic>speckle noise</topic><topic>Ultrasonic imaging</topic><topic>Ultrasonic methods</topic><topic>Ultrasonic testing</topic><topic>Ultrasound despeckling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mei, Kunqiang</creatorcontrib><creatorcontrib>Hu, Bin</creatorcontrib><creatorcontrib>Fei, Baowei</creatorcontrib><creatorcontrib>Qin, Binjie</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mei, Kunqiang</au><au>Hu, Bin</au><au>Fei, Baowei</au><au>Qin, Binjie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase Asymmetry Ultrasound Despeckling With Fractional Anisotropic Diffusion and Total Variation</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>29</volume><spage>2845</spage><epage>2859</epage><pages>2845-2859</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>We propose an ultrasound speckle filtering method for not only preserving various edge features but also filtering tissue-dependent complex speckle noises in ultrasound images. The key idea is to detect these various edges using a phase congruence-based edge significance measure called phase asymmetry (PAS), which is invariant to the intensity amplitude of edges and takes 0 in non-edge smooth regions and 1 at the idea step edge, while also taking intermediate values at slowly varying ramp edges. By leveraging the PAS metric in designing weighting coefficients to maintain a balance between fractional-order anisotropic diffusion and total variation (TV) filters in TV cost function, we propose a new fractional TV framework to not only achieve the best despeckling performance with ramp edge preservation but also reduce the staircase effect produced by integral-order filters. Then, we exploit the PAS metric in designing a new fractional-order diffusion coefficient to properly preserve low-contrast edges in diffusion filtering. Finally, different from fixed fractional-order diffusion filters, an adaptive fractional order is introduced based on the PAS metric to enhance various weak edges in the spatially transitional areas between objects. The proposed fractional TV model is minimized using the gradient descent method to obtain the final denoised image. The experimental results and real application of ultrasound breast image segmentation show that the proposed method outperforms other state-of-the-art ultrasound despeckling filters for both speckle reduction and feature preservation in terms of visual evaluation and quantitative indices. The best scores on feature similarity indices have achieved 0.867, 0.844 and 0.834 under three different levels of noise, while the best breast ultrasound segmentation accuracy in terms of the mean and median dice similarity coefficient are 96.25% and 96.15%, respectively.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>31751240</pmid><doi>10.1109/TIP.2019.2953361</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-7445-1582</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2020-01, Vol.29, p.2845-2859
issn 1057-7149
1941-0042
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7370834
source IEEE Electronic Library (IEL) Journals
subjects Adaptive filters
Anisotropic magnetoresistance
Asymmetry
Cost function
Diffusion
Diffusion coefficient
edge detection
Feature extraction
fractional-order diffusion filter
fractional-order TV filter
image denoising
Image detection
Image edge detection
Image segmentation
Measurement
Noise reduction
phase asymmetry
phase congruency
Preservation
Speckle
speckle noise
Ultrasonic imaging
Ultrasonic methods
Ultrasonic testing
Ultrasound despeckling
title Phase Asymmetry Ultrasound Despeckling With Fractional Anisotropic Diffusion and Total Variation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T02%3A37%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase%20Asymmetry%20Ultrasound%20Despeckling%20With%20Fractional%20Anisotropic%20Diffusion%20and%20Total%20Variation&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Mei,%20Kunqiang&rft.date=2020-01-01&rft.volume=29&rft.spage=2845&rft.epage=2859&rft.pages=2845-2859&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2019.2953361&rft_dat=%3Cproquest_pubme%3E2345512149%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c402t-2ca045ecf106e26e7de7b9627aaf1e3bcb920ddc3cbac6b263c7423220b214a43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2345512149&rft_id=info:pmid/31751240&rft_ieee_id=8906234&rfr_iscdi=true