Loading…
Blueberry red ringspot virus genomes from Florida inferred through analysis of blueberry root transcriptomes
A growing number of metagenomics-based approaches have been used for the discovery of viruses in insects, cultivated plants, and water in agricultural production systems. In this study, sixteen blueberry root transcriptomes from eight clonally propagated blueberry plants of cultivar ‘Emerald’ (inter...
Saved in:
Published in: | Scientific reports 2020-07, Vol.10 (1), p.12043-12043, Article 12043 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c511t-d42fd4fc8f4511667579da36bbaa819bb249422454f48d09b2e480e9253789d03 |
---|---|
cites | cdi_FETCH-LOGICAL-c511t-d42fd4fc8f4511667579da36bbaa819bb249422454f48d09b2e480e9253789d03 |
container_end_page | 12043 |
container_issue | 1 |
container_start_page | 12043 |
container_title | Scientific reports |
container_volume | 10 |
creator | Saad, N. Alcalá-Briseño, R. I. Polston, J. E. Olmstead, J. W. Varsani, A. Harmon, P. F. |
description | A growing number of metagenomics-based approaches have been used for the discovery of viruses in insects, cultivated plants, and water in agricultural production systems. In this study, sixteen blueberry root transcriptomes from eight clonally propagated blueberry plants of cultivar ‘Emerald’ (interspecific hybrid of
Vaccinium corymbosum
and
V. darrowi
) generated as part of a separate study on varietal tolerance to soil salinity were analyzed for plant viral sequences
.
The objective was to determine if the asymptomatic plants harbored the latent blueberry red ringspot virus (BRRV) in their roots. The only currently known mechanism of transmission of BRRV is through vegetative propagation; however, the virus can remain latent for years with some plants of ‘Emerald’ never developing red ringspot symptoms. Bioinformatic analyses of ‘Emerald’ transcriptomes using de novo assembly and reference-based mapping approaches yielded eight complete viral genomes of BRRV (genus
Soymovirus
, family
Caulimoviridae
). Validation in vitro by PCR confirmed the presence of BRRV in 100% of the ‘Emerald’ root samples. Sequence and phylogenetic analyses showed 94% to 97% nucleotide identity between BRRV genomes from Florida and sequences from Czech Republic, Japan, Poland, Slovenia, and the United States. Taken together, this study documented the first detection of a complete BRRV genome from roots of asymptomatic blueberry plants and in Florida through in silico analysis of plant transcriptomes. |
doi_str_mv | 10.1038/s41598-020-68654-3 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7374169</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2426177611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-d42fd4fc8f4511667579da36bbaa819bb249422454f48d09b2e480e9253789d03</originalsourceid><addsrcrecordid>eNp9kcFuFSEUhonR2KbtC3RhSNy4GYXDgRk2JtpYNWnSjV0TZgbupZkZRphpct--3N7aVheyAcJ3Pg78hJxz9pEz0XzKyKVuKgasUo2SWIlX5BgYygoEwOsX6yNylvMtK0OCRq7fkiMBSqOU4pgMX4fVtS6lHU2upylMmzzHhd6FtGa6cVMcXaY-xZFeDjGF3tIw-cIXeNmmuG621E522OWQafS0fdbFolmSnXKXwrzsPafkjbdDdmeP8wm5ufz26-JHdXX9_efFl6uqk5wvVY_ge_Rd47HslaplrXsrVNta23DdtoAaAVCix6ZnugWHDXMapKgb3TNxQj4fvPPajq7v3FT6GMycwmjTzkQbzN8nU9iaTbwztaiRK10EHx4FKf5eXV7MGHLnhsFOLq7ZAILida04L-j7f9DbuKbyIw-UrIExhYWCA9WlmHNy_qkZzsw-T3PI05Q8zUOeRpSidy-f8VTyJ70CiAOQ531wLj3f_R_tPYYsrVk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2425720064</pqid></control><display><type>article</type><title>Blueberry red ringspot virus genomes from Florida inferred through analysis of blueberry root transcriptomes</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Saad, N. ; Alcalá-Briseño, R. I. ; Polston, J. E. ; Olmstead, J. W. ; Varsani, A. ; Harmon, P. F.</creator><creatorcontrib>Saad, N. ; Alcalá-Briseño, R. I. ; Polston, J. E. ; Olmstead, J. W. ; Varsani, A. ; Harmon, P. F.</creatorcontrib><description>A growing number of metagenomics-based approaches have been used for the discovery of viruses in insects, cultivated plants, and water in agricultural production systems. In this study, sixteen blueberry root transcriptomes from eight clonally propagated blueberry plants of cultivar ‘Emerald’ (interspecific hybrid of
Vaccinium corymbosum
and
V. darrowi
) generated as part of a separate study on varietal tolerance to soil salinity were analyzed for plant viral sequences
.
The objective was to determine if the asymptomatic plants harbored the latent blueberry red ringspot virus (BRRV) in their roots. The only currently known mechanism of transmission of BRRV is through vegetative propagation; however, the virus can remain latent for years with some plants of ‘Emerald’ never developing red ringspot symptoms. Bioinformatic analyses of ‘Emerald’ transcriptomes using de novo assembly and reference-based mapping approaches yielded eight complete viral genomes of BRRV (genus
Soymovirus
, family
Caulimoviridae
). Validation in vitro by PCR confirmed the presence of BRRV in 100% of the ‘Emerald’ root samples. Sequence and phylogenetic analyses showed 94% to 97% nucleotide identity between BRRV genomes from Florida and sequences from Czech Republic, Japan, Poland, Slovenia, and the United States. Taken together, this study documented the first detection of a complete BRRV genome from roots of asymptomatic blueberry plants and in Florida through in silico analysis of plant transcriptomes.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-68654-3</identifier><identifier>PMID: 32694553</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/114 ; 631/449 ; Agricultural production ; Blueberry Plants - genetics ; Blueberry Plants - virology ; Caulimoviridae ; Cultivars ; Cultivated plants ; Evolution, Molecular ; Flowers & plants ; Fruits ; Gene Expression Profiling ; Gene mapping ; Genome, Viral - genetics ; Genomes ; Host-Pathogen Interactions ; Humanities and Social Sciences ; Interspecific ; Metagenomics ; multidisciplinary ; Phylogeny ; Plant Diseases - genetics ; Plant Diseases - virology ; Plant propagation ; Plant Roots - genetics ; Plant Roots - virology ; Plant Viruses - classification ; Plant Viruses - genetics ; Propagation ; Roots ; Science ; Science (multidisciplinary) ; Soil salinity ; Transcriptome ; Vaccinium corymbosum ; Vaccinium darrowii ; Viruses</subject><ispartof>Scientific reports, 2020-07, Vol.10 (1), p.12043-12043, Article 12043</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-d42fd4fc8f4511667579da36bbaa819bb249422454f48d09b2e480e9253789d03</citedby><cites>FETCH-LOGICAL-c511t-d42fd4fc8f4511667579da36bbaa819bb249422454f48d09b2e480e9253789d03</cites><orcidid>0000-0003-4111-2415 ; 0000-0002-7031-2195</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2425720064/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2425720064?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32694553$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Saad, N.</creatorcontrib><creatorcontrib>Alcalá-Briseño, R. I.</creatorcontrib><creatorcontrib>Polston, J. E.</creatorcontrib><creatorcontrib>Olmstead, J. W.</creatorcontrib><creatorcontrib>Varsani, A.</creatorcontrib><creatorcontrib>Harmon, P. F.</creatorcontrib><title>Blueberry red ringspot virus genomes from Florida inferred through analysis of blueberry root transcriptomes</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>A growing number of metagenomics-based approaches have been used for the discovery of viruses in insects, cultivated plants, and water in agricultural production systems. In this study, sixteen blueberry root transcriptomes from eight clonally propagated blueberry plants of cultivar ‘Emerald’ (interspecific hybrid of
Vaccinium corymbosum
and
V. darrowi
) generated as part of a separate study on varietal tolerance to soil salinity were analyzed for plant viral sequences
.
The objective was to determine if the asymptomatic plants harbored the latent blueberry red ringspot virus (BRRV) in their roots. The only currently known mechanism of transmission of BRRV is through vegetative propagation; however, the virus can remain latent for years with some plants of ‘Emerald’ never developing red ringspot symptoms. Bioinformatic analyses of ‘Emerald’ transcriptomes using de novo assembly and reference-based mapping approaches yielded eight complete viral genomes of BRRV (genus
Soymovirus
, family
Caulimoviridae
). Validation in vitro by PCR confirmed the presence of BRRV in 100% of the ‘Emerald’ root samples. Sequence and phylogenetic analyses showed 94% to 97% nucleotide identity between BRRV genomes from Florida and sequences from Czech Republic, Japan, Poland, Slovenia, and the United States. Taken together, this study documented the first detection of a complete BRRV genome from roots of asymptomatic blueberry plants and in Florida through in silico analysis of plant transcriptomes.</description><subject>631/114</subject><subject>631/449</subject><subject>Agricultural production</subject><subject>Blueberry Plants - genetics</subject><subject>Blueberry Plants - virology</subject><subject>Caulimoviridae</subject><subject>Cultivars</subject><subject>Cultivated plants</subject><subject>Evolution, Molecular</subject><subject>Flowers & plants</subject><subject>Fruits</subject><subject>Gene Expression Profiling</subject><subject>Gene mapping</subject><subject>Genome, Viral - genetics</subject><subject>Genomes</subject><subject>Host-Pathogen Interactions</subject><subject>Humanities and Social Sciences</subject><subject>Interspecific</subject><subject>Metagenomics</subject><subject>multidisciplinary</subject><subject>Phylogeny</subject><subject>Plant Diseases - genetics</subject><subject>Plant Diseases - virology</subject><subject>Plant propagation</subject><subject>Plant Roots - genetics</subject><subject>Plant Roots - virology</subject><subject>Plant Viruses - classification</subject><subject>Plant Viruses - genetics</subject><subject>Propagation</subject><subject>Roots</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Soil salinity</subject><subject>Transcriptome</subject><subject>Vaccinium corymbosum</subject><subject>Vaccinium darrowii</subject><subject>Viruses</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9kcFuFSEUhonR2KbtC3RhSNy4GYXDgRk2JtpYNWnSjV0TZgbupZkZRphpct--3N7aVheyAcJ3Pg78hJxz9pEz0XzKyKVuKgasUo2SWIlX5BgYygoEwOsX6yNylvMtK0OCRq7fkiMBSqOU4pgMX4fVtS6lHU2upylMmzzHhd6FtGa6cVMcXaY-xZFeDjGF3tIw-cIXeNmmuG621E522OWQafS0fdbFolmSnXKXwrzsPafkjbdDdmeP8wm5ufz26-JHdXX9_efFl6uqk5wvVY_ge_Rd47HslaplrXsrVNta23DdtoAaAVCix6ZnugWHDXMapKgb3TNxQj4fvPPajq7v3FT6GMycwmjTzkQbzN8nU9iaTbwztaiRK10EHx4FKf5eXV7MGHLnhsFOLq7ZAILida04L-j7f9DbuKbyIw-UrIExhYWCA9WlmHNy_qkZzsw-T3PI05Q8zUOeRpSidy-f8VTyJ70CiAOQ531wLj3f_R_tPYYsrVk</recordid><startdate>20200721</startdate><enddate>20200721</enddate><creator>Saad, N.</creator><creator>Alcalá-Briseño, R. I.</creator><creator>Polston, J. E.</creator><creator>Olmstead, J. W.</creator><creator>Varsani, A.</creator><creator>Harmon, P. F.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4111-2415</orcidid><orcidid>https://orcid.org/0000-0002-7031-2195</orcidid></search><sort><creationdate>20200721</creationdate><title>Blueberry red ringspot virus genomes from Florida inferred through analysis of blueberry root transcriptomes</title><author>Saad, N. ; Alcalá-Briseño, R. I. ; Polston, J. E. ; Olmstead, J. W. ; Varsani, A. ; Harmon, P. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-d42fd4fc8f4511667579da36bbaa819bb249422454f48d09b2e480e9253789d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/114</topic><topic>631/449</topic><topic>Agricultural production</topic><topic>Blueberry Plants - genetics</topic><topic>Blueberry Plants - virology</topic><topic>Caulimoviridae</topic><topic>Cultivars</topic><topic>Cultivated plants</topic><topic>Evolution, Molecular</topic><topic>Flowers & plants</topic><topic>Fruits</topic><topic>Gene Expression Profiling</topic><topic>Gene mapping</topic><topic>Genome, Viral - genetics</topic><topic>Genomes</topic><topic>Host-Pathogen Interactions</topic><topic>Humanities and Social Sciences</topic><topic>Interspecific</topic><topic>Metagenomics</topic><topic>multidisciplinary</topic><topic>Phylogeny</topic><topic>Plant Diseases - genetics</topic><topic>Plant Diseases - virology</topic><topic>Plant propagation</topic><topic>Plant Roots - genetics</topic><topic>Plant Roots - virology</topic><topic>Plant Viruses - classification</topic><topic>Plant Viruses - genetics</topic><topic>Propagation</topic><topic>Roots</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Soil salinity</topic><topic>Transcriptome</topic><topic>Vaccinium corymbosum</topic><topic>Vaccinium darrowii</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saad, N.</creatorcontrib><creatorcontrib>Alcalá-Briseño, R. I.</creatorcontrib><creatorcontrib>Polston, J. E.</creatorcontrib><creatorcontrib>Olmstead, J. W.</creatorcontrib><creatorcontrib>Varsani, A.</creatorcontrib><creatorcontrib>Harmon, P. F.</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saad, N.</au><au>Alcalá-Briseño, R. I.</au><au>Polston, J. E.</au><au>Olmstead, J. W.</au><au>Varsani, A.</au><au>Harmon, P. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Blueberry red ringspot virus genomes from Florida inferred through analysis of blueberry root transcriptomes</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-07-21</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>12043</spage><epage>12043</epage><pages>12043-12043</pages><artnum>12043</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>A growing number of metagenomics-based approaches have been used for the discovery of viruses in insects, cultivated plants, and water in agricultural production systems. In this study, sixteen blueberry root transcriptomes from eight clonally propagated blueberry plants of cultivar ‘Emerald’ (interspecific hybrid of
Vaccinium corymbosum
and
V. darrowi
) generated as part of a separate study on varietal tolerance to soil salinity were analyzed for plant viral sequences
.
The objective was to determine if the asymptomatic plants harbored the latent blueberry red ringspot virus (BRRV) in their roots. The only currently known mechanism of transmission of BRRV is through vegetative propagation; however, the virus can remain latent for years with some plants of ‘Emerald’ never developing red ringspot symptoms. Bioinformatic analyses of ‘Emerald’ transcriptomes using de novo assembly and reference-based mapping approaches yielded eight complete viral genomes of BRRV (genus
Soymovirus
, family
Caulimoviridae
). Validation in vitro by PCR confirmed the presence of BRRV in 100% of the ‘Emerald’ root samples. Sequence and phylogenetic analyses showed 94% to 97% nucleotide identity between BRRV genomes from Florida and sequences from Czech Republic, Japan, Poland, Slovenia, and the United States. Taken together, this study documented the first detection of a complete BRRV genome from roots of asymptomatic blueberry plants and in Florida through in silico analysis of plant transcriptomes.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32694553</pmid><doi>10.1038/s41598-020-68654-3</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-4111-2415</orcidid><orcidid>https://orcid.org/0000-0002-7031-2195</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2020-07, Vol.10 (1), p.12043-12043, Article 12043 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7374169 |
source | Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 631/114 631/449 Agricultural production Blueberry Plants - genetics Blueberry Plants - virology Caulimoviridae Cultivars Cultivated plants Evolution, Molecular Flowers & plants Fruits Gene Expression Profiling Gene mapping Genome, Viral - genetics Genomes Host-Pathogen Interactions Humanities and Social Sciences Interspecific Metagenomics multidisciplinary Phylogeny Plant Diseases - genetics Plant Diseases - virology Plant propagation Plant Roots - genetics Plant Roots - virology Plant Viruses - classification Plant Viruses - genetics Propagation Roots Science Science (multidisciplinary) Soil salinity Transcriptome Vaccinium corymbosum Vaccinium darrowii Viruses |
title | Blueberry red ringspot virus genomes from Florida inferred through analysis of blueberry root transcriptomes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A45%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Blueberry%20red%20ringspot%20virus%20genomes%20from%20Florida%20inferred%20through%20analysis%20of%20blueberry%20root%20transcriptomes&rft.jtitle=Scientific%20reports&rft.au=Saad,%20N.&rft.date=2020-07-21&rft.volume=10&rft.issue=1&rft.spage=12043&rft.epage=12043&rft.pages=12043-12043&rft.artnum=12043&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-68654-3&rft_dat=%3Cproquest_pubme%3E2426177611%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c511t-d42fd4fc8f4511667579da36bbaa819bb249422454f48d09b2e480e9253789d03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2425720064&rft_id=info:pmid/32694553&rfr_iscdi=true |