Loading…

Blueberry red ringspot virus genomes from Florida inferred through analysis of blueberry root transcriptomes

A growing number of metagenomics-based approaches have been used for the discovery of viruses in insects, cultivated plants, and water in agricultural production systems. In this study, sixteen blueberry root transcriptomes from eight clonally propagated blueberry plants of cultivar ‘Emerald’ (inter...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2020-07, Vol.10 (1), p.12043-12043, Article 12043
Main Authors: Saad, N., Alcalá-Briseño, R. I., Polston, J. E., Olmstead, J. W., Varsani, A., Harmon, P. F.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c511t-d42fd4fc8f4511667579da36bbaa819bb249422454f48d09b2e480e9253789d03
cites cdi_FETCH-LOGICAL-c511t-d42fd4fc8f4511667579da36bbaa819bb249422454f48d09b2e480e9253789d03
container_end_page 12043
container_issue 1
container_start_page 12043
container_title Scientific reports
container_volume 10
creator Saad, N.
Alcalá-Briseño, R. I.
Polston, J. E.
Olmstead, J. W.
Varsani, A.
Harmon, P. F.
description A growing number of metagenomics-based approaches have been used for the discovery of viruses in insects, cultivated plants, and water in agricultural production systems. In this study, sixteen blueberry root transcriptomes from eight clonally propagated blueberry plants of cultivar ‘Emerald’ (interspecific hybrid of Vaccinium corymbosum and V. darrowi ) generated as part of a separate study on varietal tolerance to soil salinity were analyzed for plant viral sequences . The objective was to determine if the asymptomatic plants harbored the latent blueberry red ringspot virus (BRRV) in their roots. The only currently known mechanism of transmission of BRRV is through vegetative propagation; however, the virus can remain latent for years with some plants of ‘Emerald’ never developing red ringspot symptoms. Bioinformatic analyses of ‘Emerald’ transcriptomes using de novo assembly and reference-based mapping approaches yielded eight complete viral genomes of BRRV (genus Soymovirus , family Caulimoviridae ). Validation in vitro by PCR confirmed the presence of BRRV in 100% of the ‘Emerald’ root samples. Sequence and phylogenetic analyses showed 94% to 97% nucleotide identity between BRRV genomes from Florida and sequences from Czech Republic, Japan, Poland, Slovenia, and the United States. Taken together, this study documented the first detection of a complete BRRV genome from roots of asymptomatic blueberry plants and in Florida through in silico analysis of plant transcriptomes.
doi_str_mv 10.1038/s41598-020-68654-3
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7374169</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2426177611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-d42fd4fc8f4511667579da36bbaa819bb249422454f48d09b2e480e9253789d03</originalsourceid><addsrcrecordid>eNp9kcFuFSEUhonR2KbtC3RhSNy4GYXDgRk2JtpYNWnSjV0TZgbupZkZRphpct--3N7aVheyAcJ3Pg78hJxz9pEz0XzKyKVuKgasUo2SWIlX5BgYygoEwOsX6yNylvMtK0OCRq7fkiMBSqOU4pgMX4fVtS6lHU2upylMmzzHhd6FtGa6cVMcXaY-xZFeDjGF3tIw-cIXeNmmuG621E522OWQafS0fdbFolmSnXKXwrzsPafkjbdDdmeP8wm5ufz26-JHdXX9_efFl6uqk5wvVY_ge_Rd47HslaplrXsrVNta23DdtoAaAVCix6ZnugWHDXMapKgb3TNxQj4fvPPajq7v3FT6GMycwmjTzkQbzN8nU9iaTbwztaiRK10EHx4FKf5eXV7MGHLnhsFOLq7ZAILida04L-j7f9DbuKbyIw-UrIExhYWCA9WlmHNy_qkZzsw-T3PI05Q8zUOeRpSidy-f8VTyJ70CiAOQ531wLj3f_R_tPYYsrVk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2425720064</pqid></control><display><type>article</type><title>Blueberry red ringspot virus genomes from Florida inferred through analysis of blueberry root transcriptomes</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Saad, N. ; Alcalá-Briseño, R. I. ; Polston, J. E. ; Olmstead, J. W. ; Varsani, A. ; Harmon, P. F.</creator><creatorcontrib>Saad, N. ; Alcalá-Briseño, R. I. ; Polston, J. E. ; Olmstead, J. W. ; Varsani, A. ; Harmon, P. F.</creatorcontrib><description>A growing number of metagenomics-based approaches have been used for the discovery of viruses in insects, cultivated plants, and water in agricultural production systems. In this study, sixteen blueberry root transcriptomes from eight clonally propagated blueberry plants of cultivar ‘Emerald’ (interspecific hybrid of Vaccinium corymbosum and V. darrowi ) generated as part of a separate study on varietal tolerance to soil salinity were analyzed for plant viral sequences . The objective was to determine if the asymptomatic plants harbored the latent blueberry red ringspot virus (BRRV) in their roots. The only currently known mechanism of transmission of BRRV is through vegetative propagation; however, the virus can remain latent for years with some plants of ‘Emerald’ never developing red ringspot symptoms. Bioinformatic analyses of ‘Emerald’ transcriptomes using de novo assembly and reference-based mapping approaches yielded eight complete viral genomes of BRRV (genus Soymovirus , family Caulimoviridae ). Validation in vitro by PCR confirmed the presence of BRRV in 100% of the ‘Emerald’ root samples. Sequence and phylogenetic analyses showed 94% to 97% nucleotide identity between BRRV genomes from Florida and sequences from Czech Republic, Japan, Poland, Slovenia, and the United States. Taken together, this study documented the first detection of a complete BRRV genome from roots of asymptomatic blueberry plants and in Florida through in silico analysis of plant transcriptomes.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-68654-3</identifier><identifier>PMID: 32694553</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/114 ; 631/449 ; Agricultural production ; Blueberry Plants - genetics ; Blueberry Plants - virology ; Caulimoviridae ; Cultivars ; Cultivated plants ; Evolution, Molecular ; Flowers &amp; plants ; Fruits ; Gene Expression Profiling ; Gene mapping ; Genome, Viral - genetics ; Genomes ; Host-Pathogen Interactions ; Humanities and Social Sciences ; Interspecific ; Metagenomics ; multidisciplinary ; Phylogeny ; Plant Diseases - genetics ; Plant Diseases - virology ; Plant propagation ; Plant Roots - genetics ; Plant Roots - virology ; Plant Viruses - classification ; Plant Viruses - genetics ; Propagation ; Roots ; Science ; Science (multidisciplinary) ; Soil salinity ; Transcriptome ; Vaccinium corymbosum ; Vaccinium darrowii ; Viruses</subject><ispartof>Scientific reports, 2020-07, Vol.10 (1), p.12043-12043, Article 12043</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-d42fd4fc8f4511667579da36bbaa819bb249422454f48d09b2e480e9253789d03</citedby><cites>FETCH-LOGICAL-c511t-d42fd4fc8f4511667579da36bbaa819bb249422454f48d09b2e480e9253789d03</cites><orcidid>0000-0003-4111-2415 ; 0000-0002-7031-2195</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2425720064/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2425720064?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32694553$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Saad, N.</creatorcontrib><creatorcontrib>Alcalá-Briseño, R. I.</creatorcontrib><creatorcontrib>Polston, J. E.</creatorcontrib><creatorcontrib>Olmstead, J. W.</creatorcontrib><creatorcontrib>Varsani, A.</creatorcontrib><creatorcontrib>Harmon, P. F.</creatorcontrib><title>Blueberry red ringspot virus genomes from Florida inferred through analysis of blueberry root transcriptomes</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>A growing number of metagenomics-based approaches have been used for the discovery of viruses in insects, cultivated plants, and water in agricultural production systems. In this study, sixteen blueberry root transcriptomes from eight clonally propagated blueberry plants of cultivar ‘Emerald’ (interspecific hybrid of Vaccinium corymbosum and V. darrowi ) generated as part of a separate study on varietal tolerance to soil salinity were analyzed for plant viral sequences . The objective was to determine if the asymptomatic plants harbored the latent blueberry red ringspot virus (BRRV) in their roots. The only currently known mechanism of transmission of BRRV is through vegetative propagation; however, the virus can remain latent for years with some plants of ‘Emerald’ never developing red ringspot symptoms. Bioinformatic analyses of ‘Emerald’ transcriptomes using de novo assembly and reference-based mapping approaches yielded eight complete viral genomes of BRRV (genus Soymovirus , family Caulimoviridae ). Validation in vitro by PCR confirmed the presence of BRRV in 100% of the ‘Emerald’ root samples. Sequence and phylogenetic analyses showed 94% to 97% nucleotide identity between BRRV genomes from Florida and sequences from Czech Republic, Japan, Poland, Slovenia, and the United States. Taken together, this study documented the first detection of a complete BRRV genome from roots of asymptomatic blueberry plants and in Florida through in silico analysis of plant transcriptomes.</description><subject>631/114</subject><subject>631/449</subject><subject>Agricultural production</subject><subject>Blueberry Plants - genetics</subject><subject>Blueberry Plants - virology</subject><subject>Caulimoviridae</subject><subject>Cultivars</subject><subject>Cultivated plants</subject><subject>Evolution, Molecular</subject><subject>Flowers &amp; plants</subject><subject>Fruits</subject><subject>Gene Expression Profiling</subject><subject>Gene mapping</subject><subject>Genome, Viral - genetics</subject><subject>Genomes</subject><subject>Host-Pathogen Interactions</subject><subject>Humanities and Social Sciences</subject><subject>Interspecific</subject><subject>Metagenomics</subject><subject>multidisciplinary</subject><subject>Phylogeny</subject><subject>Plant Diseases - genetics</subject><subject>Plant Diseases - virology</subject><subject>Plant propagation</subject><subject>Plant Roots - genetics</subject><subject>Plant Roots - virology</subject><subject>Plant Viruses - classification</subject><subject>Plant Viruses - genetics</subject><subject>Propagation</subject><subject>Roots</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Soil salinity</subject><subject>Transcriptome</subject><subject>Vaccinium corymbosum</subject><subject>Vaccinium darrowii</subject><subject>Viruses</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9kcFuFSEUhonR2KbtC3RhSNy4GYXDgRk2JtpYNWnSjV0TZgbupZkZRphpct--3N7aVheyAcJ3Pg78hJxz9pEz0XzKyKVuKgasUo2SWIlX5BgYygoEwOsX6yNylvMtK0OCRq7fkiMBSqOU4pgMX4fVtS6lHU2upylMmzzHhd6FtGa6cVMcXaY-xZFeDjGF3tIw-cIXeNmmuG621E522OWQafS0fdbFolmSnXKXwrzsPafkjbdDdmeP8wm5ufz26-JHdXX9_efFl6uqk5wvVY_ge_Rd47HslaplrXsrVNta23DdtoAaAVCix6ZnugWHDXMapKgb3TNxQj4fvPPajq7v3FT6GMycwmjTzkQbzN8nU9iaTbwztaiRK10EHx4FKf5eXV7MGHLnhsFOLq7ZAILida04L-j7f9DbuKbyIw-UrIExhYWCA9WlmHNy_qkZzsw-T3PI05Q8zUOeRpSidy-f8VTyJ70CiAOQ531wLj3f_R_tPYYsrVk</recordid><startdate>20200721</startdate><enddate>20200721</enddate><creator>Saad, N.</creator><creator>Alcalá-Briseño, R. I.</creator><creator>Polston, J. E.</creator><creator>Olmstead, J. W.</creator><creator>Varsani, A.</creator><creator>Harmon, P. F.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4111-2415</orcidid><orcidid>https://orcid.org/0000-0002-7031-2195</orcidid></search><sort><creationdate>20200721</creationdate><title>Blueberry red ringspot virus genomes from Florida inferred through analysis of blueberry root transcriptomes</title><author>Saad, N. ; Alcalá-Briseño, R. I. ; Polston, J. E. ; Olmstead, J. W. ; Varsani, A. ; Harmon, P. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-d42fd4fc8f4511667579da36bbaa819bb249422454f48d09b2e480e9253789d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/114</topic><topic>631/449</topic><topic>Agricultural production</topic><topic>Blueberry Plants - genetics</topic><topic>Blueberry Plants - virology</topic><topic>Caulimoviridae</topic><topic>Cultivars</topic><topic>Cultivated plants</topic><topic>Evolution, Molecular</topic><topic>Flowers &amp; plants</topic><topic>Fruits</topic><topic>Gene Expression Profiling</topic><topic>Gene mapping</topic><topic>Genome, Viral - genetics</topic><topic>Genomes</topic><topic>Host-Pathogen Interactions</topic><topic>Humanities and Social Sciences</topic><topic>Interspecific</topic><topic>Metagenomics</topic><topic>multidisciplinary</topic><topic>Phylogeny</topic><topic>Plant Diseases - genetics</topic><topic>Plant Diseases - virology</topic><topic>Plant propagation</topic><topic>Plant Roots - genetics</topic><topic>Plant Roots - virology</topic><topic>Plant Viruses - classification</topic><topic>Plant Viruses - genetics</topic><topic>Propagation</topic><topic>Roots</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Soil salinity</topic><topic>Transcriptome</topic><topic>Vaccinium corymbosum</topic><topic>Vaccinium darrowii</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saad, N.</creatorcontrib><creatorcontrib>Alcalá-Briseño, R. I.</creatorcontrib><creatorcontrib>Polston, J. E.</creatorcontrib><creatorcontrib>Olmstead, J. W.</creatorcontrib><creatorcontrib>Varsani, A.</creatorcontrib><creatorcontrib>Harmon, P. F.</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saad, N.</au><au>Alcalá-Briseño, R. I.</au><au>Polston, J. E.</au><au>Olmstead, J. W.</au><au>Varsani, A.</au><au>Harmon, P. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Blueberry red ringspot virus genomes from Florida inferred through analysis of blueberry root transcriptomes</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-07-21</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>12043</spage><epage>12043</epage><pages>12043-12043</pages><artnum>12043</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>A growing number of metagenomics-based approaches have been used for the discovery of viruses in insects, cultivated plants, and water in agricultural production systems. In this study, sixteen blueberry root transcriptomes from eight clonally propagated blueberry plants of cultivar ‘Emerald’ (interspecific hybrid of Vaccinium corymbosum and V. darrowi ) generated as part of a separate study on varietal tolerance to soil salinity were analyzed for plant viral sequences . The objective was to determine if the asymptomatic plants harbored the latent blueberry red ringspot virus (BRRV) in their roots. The only currently known mechanism of transmission of BRRV is through vegetative propagation; however, the virus can remain latent for years with some plants of ‘Emerald’ never developing red ringspot symptoms. Bioinformatic analyses of ‘Emerald’ transcriptomes using de novo assembly and reference-based mapping approaches yielded eight complete viral genomes of BRRV (genus Soymovirus , family Caulimoviridae ). Validation in vitro by PCR confirmed the presence of BRRV in 100% of the ‘Emerald’ root samples. Sequence and phylogenetic analyses showed 94% to 97% nucleotide identity between BRRV genomes from Florida and sequences from Czech Republic, Japan, Poland, Slovenia, and the United States. Taken together, this study documented the first detection of a complete BRRV genome from roots of asymptomatic blueberry plants and in Florida through in silico analysis of plant transcriptomes.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32694553</pmid><doi>10.1038/s41598-020-68654-3</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-4111-2415</orcidid><orcidid>https://orcid.org/0000-0002-7031-2195</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2020-07, Vol.10 (1), p.12043-12043, Article 12043
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7374169
source Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access
subjects 631/114
631/449
Agricultural production
Blueberry Plants - genetics
Blueberry Plants - virology
Caulimoviridae
Cultivars
Cultivated plants
Evolution, Molecular
Flowers & plants
Fruits
Gene Expression Profiling
Gene mapping
Genome, Viral - genetics
Genomes
Host-Pathogen Interactions
Humanities and Social Sciences
Interspecific
Metagenomics
multidisciplinary
Phylogeny
Plant Diseases - genetics
Plant Diseases - virology
Plant propagation
Plant Roots - genetics
Plant Roots - virology
Plant Viruses - classification
Plant Viruses - genetics
Propagation
Roots
Science
Science (multidisciplinary)
Soil salinity
Transcriptome
Vaccinium corymbosum
Vaccinium darrowii
Viruses
title Blueberry red ringspot virus genomes from Florida inferred through analysis of blueberry root transcriptomes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A45%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Blueberry%20red%20ringspot%20virus%20genomes%20from%20Florida%20inferred%20through%20analysis%20of%20blueberry%20root%20transcriptomes&rft.jtitle=Scientific%20reports&rft.au=Saad,%20N.&rft.date=2020-07-21&rft.volume=10&rft.issue=1&rft.spage=12043&rft.epage=12043&rft.pages=12043-12043&rft.artnum=12043&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-68654-3&rft_dat=%3Cproquest_pubme%3E2426177611%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c511t-d42fd4fc8f4511667579da36bbaa819bb249422454f48d09b2e480e9253789d03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2425720064&rft_id=info:pmid/32694553&rfr_iscdi=true