Loading…
Selection of aptamers targeted to food‐borne pathogenic bacteria Vibrio parahaemolyticus
Vibrio parahaemolyticus (Vp) is a common marine halophilic food‐borne pathogen, mainly found in seafood and food with a high salt content. Gastrointestinal reactions such as diarrhea, headache, vomiting, nausea, and abdominal cramps may occur after eating food infected with Vp. This study aimed to s...
Saved in:
Published in: | Food science & nutrition 2020-07, Vol.8 (7), p.3835-3842 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Vibrio parahaemolyticus (Vp) is a common marine halophilic food‐borne pathogen, mainly found in seafood and food with a high salt content. Gastrointestinal reactions such as diarrhea, headache, vomiting, nausea, and abdominal cramps may occur after eating food infected with Vp. This study aimed to screen for high‐affinity aptamers that specifically recognize Vp. A high‐affinity modified aptamer screening kit was used to rapidly screen aptamers of the food‐borne Vp. The first round of screening involved release of target aptamers from the microspheres. The "false‐positive" aptamers were eliminated after specific binding to and elution of Vp in the second round. The second round of screening of the aptamers involved polymerase chain reaction (PCR), and the abundance of a sequence was determined using next‐generation sequencing. Nine high‐affinity aptamer sequences were obtained, and the first eight modified aptamer sequences were derived using a cloud‐based intelligent software of the American AM Biotech Co. Escherichia coli (E. coli) was used as a control, and aptamer ID 12 with the highest affinity for Vp was selected using real‐time PCR. According to the principle of color change caused by nano‐gold condensing under salt induction, Salmonella, Listeria monocytogenes (L. monocytogenes), and E. coli were used as counter‐screening bacteria, and the aptamer ID12 was combined with nano‐gold. The results showed that aptamer ID12 has strong specificity for Vp. Based on these findings, this study developed a simple, innovative, and rapid method for screening Vp aptamers.
Aptamers as novel biometric molecule recognition tools are being widely used for disease and food-borne pathogen detection, drug development, clinical diagnosis, and analytical chemistry. We used a kit specially designed by AM Biotech combined with qPCR and nano-gold to screen high-affinity, highly specific modified aptamers of Vp. |
---|---|
ISSN: | 2048-7177 2048-7177 |
DOI: | 10.1002/fsn3.1677 |