Loading…

Screening of Parkinsonian subtle fine-motor impairment from touchscreen typing via deep learning

Fine-motor impairment (FMI) is progressively expressed in early Parkinson’s Disease (PD) patients and is now known to be evident in the immediate prodromal stage of the condition. The clinical techniques for detecting FMI may not be robust enough and here, we show that the subtle FMI of early PD pat...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2020-07, Vol.10 (1), p.12623-12623, Article 12623
Main Authors: Iakovakis, Dimitrios, Chaudhuri, K. Ray, Klingelhoefer, Lisa, Bostantjopoulou, Sevasti, Katsarou, Zoe, Trivedi, Dhaval, Reichmann, Heinz, Hadjidimitriou, Stelios, Charisis, Vasileios, Hadjileontiadis, Leontios J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Fine-motor impairment (FMI) is progressively expressed in early Parkinson’s Disease (PD) patients and is now known to be evident in the immediate prodromal stage of the condition. The clinical techniques for detecting FMI may not be robust enough and here, we show that the subtle FMI of early PD patients can be effectively estimated from the analysis of natural smartphone touchscreen typing via deep learning networks, trained in stages of initialization and fine-tuning. In a validation dataset of 36,000 typing sessions from 39 subjects (17 healthy/22 PD patients with medically validated UPDRS Part III single-item scores), the proposed approach achieved values of area under the receiver operating characteristic curve (AUC) of 0.89 (95% confidence interval: 0.80–0.96) with sensitivity/specificity: 0.90/0.83. The derived estimations result in statistically significant ( p < 0.05 ) correlation of 0.66/0.73/0.58 with the clinical standard UPDRS Part III items 22/23/31, respectively. Further validation analysis on 9 de novo PD patients vs. 17 healthy controls classification resulted in AUC of 0.97 (0.93–1.00) with 0.93/0.90. For 253 remote study participants, with self-reported health status providing 252.000 typing sessions via a touchscreen typing data acquisition mobile app (iPrognosis), the proposed approach predicted 0.79 AUC (0.66–0.91) with 0.76/0.71. Remote and unobtrusive screening of subtle FMI via natural smartphone usage, may assist in consolidating early and accurate diagnosis of PD.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-020-69369-1