Loading…

Next-Generation Multifunctional Carbon–Metal Nanohybrids for Energy and Environmental Applications

Nanotechnology has unprecedentedly revolutionized human societies over the past decades and will continue to advance our broad societal goals in the coming decades. The research, development, and particularly the application of engineered nanomaterials have shifted the focus from “less efficient” si...

Full description

Saved in:
Bibliographic Details
Published in:Environmental science & technology 2019-07, Vol.53 (13), p.7265-7287
Main Authors: Wang, Dengjun, Saleh, Navid B, Sun, Wenjie, Park, Chang Min, Shen, Chongyang, Aich, Nirupam, Peijnenburg, Willie J. G. M, Zhang, Wei, Jin, Yan, Su, Chunming
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a494t-185a76e60139d1241f9bbf64c6de26efddb3b31770054869e5dabd9d6cdb4f603
cites cdi_FETCH-LOGICAL-a494t-185a76e60139d1241f9bbf64c6de26efddb3b31770054869e5dabd9d6cdb4f603
container_end_page 7287
container_issue 13
container_start_page 7265
container_title Environmental science & technology
container_volume 53
creator Wang, Dengjun
Saleh, Navid B
Sun, Wenjie
Park, Chang Min
Shen, Chongyang
Aich, Nirupam
Peijnenburg, Willie J. G. M
Zhang, Wei
Jin, Yan
Su, Chunming
description Nanotechnology has unprecedentedly revolutionized human societies over the past decades and will continue to advance our broad societal goals in the coming decades. The research, development, and particularly the application of engineered nanomaterials have shifted the focus from “less efficient” single-component nanomaterials toward “superior-performance”, next-generation multifunctional nanohybrids. Carbon nanomaterials (e.g., carbon nanotubes, graphene family nanomaterials, carbon dots, and graphitic carbon nitride) and metal/metal oxide nanoparticles (e.g., Ag, Au, CdS, Cu2O, MoS2, TiO2, and ZnO) combinations are the most commonly pursued nanohybrids (carbon–metal nanohybrids; CMNHs), which exhibit appealing properties and promising multifunctionalities for addressing multiple complex challenges faced by humanity at the critical energy–water–environment (EWE) nexus. In this frontier review, we first highlight the altered and newly emerging properties (e.g., electronic and optical attributes, particle size, shape, morphology, crystallinity, dimensionality, carbon/metal ratio, and hybridization mode) of CMNHs that are distinct from those of their parent component materials. We then illustrate how these important newly emerging properties and functions of CMNHs direct their performances at the EWE nexus including energy harvesting (e.g., H2O splitting and CO2 conversion), water treatment (e.g., contaminant removal and membrane technology), and environmental sensing and in situ nanoremediation. This review concludes with identifications of critical knowledge gaps and future research directions for maximizing the benefits of next-generation multifunctional CMNHs at the EWE nexus and beyond.
doi_str_mv 10.1021/acs.est.9b01453
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7388031</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2253846640</sourcerecordid><originalsourceid>FETCH-LOGICAL-a494t-185a76e60139d1241f9bbf64c6de26efddb3b31770054869e5dabd9d6cdb4f603</originalsourceid><addsrcrecordid>eNp1UU1LwzAYDqLonJ69ScGjdEuaNG0uggy_YNOLgreQNKlWuqQm7XA3_4P_0F9i6ubQg6fk5X2-eB8AjhAcIZigsSj8SPt2xCREJMVbYIDSBMZpnqJtMIAQ4Zhh-rgH9r1_gRAmGOa7YA8jxBgiyQCoW_3WxlfaaCfayppo1tVtVXam6CdRRxPhpDWf7x8z3YbxVhj7vJSuUj4qrYsuAvFpGQmjwndROWvm2vTA86apq-Jb0x-AnVLUXh-u3yF4uLy4n1zH07urm8n5NBaEkTZGeSoyqmlIzRRKCCqZlCUlBVU6obpUSmKJUZZBmJKcMp0qIRVTtFCSlBTiIThb6TadnGtVhCRO1Lxx1Vy4Jbei4n83pnrmT3bBM5znEKMgcLIWcPa1C4flL7Zz4QyeJ0mKc0Ip6W3GK1ThrPdOlxsHBHlfCw-18J69riUwjn8H2-B_egiA0xWgZ248_5P7AnuInKQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2253846640</pqid></control><display><type>article</type><title>Next-Generation Multifunctional Carbon–Metal Nanohybrids for Energy and Environmental Applications</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Wang, Dengjun ; Saleh, Navid B ; Sun, Wenjie ; Park, Chang Min ; Shen, Chongyang ; Aich, Nirupam ; Peijnenburg, Willie J. G. M ; Zhang, Wei ; Jin, Yan ; Su, Chunming</creator><creatorcontrib>Wang, Dengjun ; Saleh, Navid B ; Sun, Wenjie ; Park, Chang Min ; Shen, Chongyang ; Aich, Nirupam ; Peijnenburg, Willie J. G. M ; Zhang, Wei ; Jin, Yan ; Su, Chunming</creatorcontrib><description>Nanotechnology has unprecedentedly revolutionized human societies over the past decades and will continue to advance our broad societal goals in the coming decades. The research, development, and particularly the application of engineered nanomaterials have shifted the focus from “less efficient” single-component nanomaterials toward “superior-performance”, next-generation multifunctional nanohybrids. Carbon nanomaterials (e.g., carbon nanotubes, graphene family nanomaterials, carbon dots, and graphitic carbon nitride) and metal/metal oxide nanoparticles (e.g., Ag, Au, CdS, Cu2O, MoS2, TiO2, and ZnO) combinations are the most commonly pursued nanohybrids (carbon–metal nanohybrids; CMNHs), which exhibit appealing properties and promising multifunctionalities for addressing multiple complex challenges faced by humanity at the critical energy–water–environment (EWE) nexus. In this frontier review, we first highlight the altered and newly emerging properties (e.g., electronic and optical attributes, particle size, shape, morphology, crystallinity, dimensionality, carbon/metal ratio, and hybridization mode) of CMNHs that are distinct from those of their parent component materials. We then illustrate how these important newly emerging properties and functions of CMNHs direct their performances at the EWE nexus including energy harvesting (e.g., H2O splitting and CO2 conversion), water treatment (e.g., contaminant removal and membrane technology), and environmental sensing and in situ nanoremediation. This review concludes with identifications of critical knowledge gaps and future research directions for maximizing the benefits of next-generation multifunctional CMNHs at the EWE nexus and beyond.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.9b01453</identifier><identifier>PMID: 31199142</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Carbon ; Carbon dioxide ; Carbon nanotubes ; Carbon nitride ; Contaminants ; Energy ; Energy harvesting ; Gold ; Graphene ; Graphite ; Hybridization ; Marine environment ; Metals ; Molybdenum disulfide ; Morphology ; Nanomaterials ; Nanoparticles ; Nanostructures ; Nanotechnology ; Nanotubes ; Nanotubes, Carbon ; Optical properties ; Pollutant removal ; Silver ; Titanium dioxide ; Water pollution ; Water treatment ; Zinc oxide</subject><ispartof>Environmental science &amp; technology, 2019-07, Vol.53 (13), p.7265-7287</ispartof><rights>Copyright American Chemical Society Jul 2, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a494t-185a76e60139d1241f9bbf64c6de26efddb3b31770054869e5dabd9d6cdb4f603</citedby><cites>FETCH-LOGICAL-a494t-185a76e60139d1241f9bbf64c6de26efddb3b31770054869e5dabd9d6cdb4f603</cites><orcidid>0000-0002-2047-5260 ; 0000-0003-0541-0300 ; 0000-0003-1896-8127 ; 0000-0001-6092-5783 ; 0000-0002-2937-1732</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31199142$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Dengjun</creatorcontrib><creatorcontrib>Saleh, Navid B</creatorcontrib><creatorcontrib>Sun, Wenjie</creatorcontrib><creatorcontrib>Park, Chang Min</creatorcontrib><creatorcontrib>Shen, Chongyang</creatorcontrib><creatorcontrib>Aich, Nirupam</creatorcontrib><creatorcontrib>Peijnenburg, Willie J. G. M</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Jin, Yan</creatorcontrib><creatorcontrib>Su, Chunming</creatorcontrib><title>Next-Generation Multifunctional Carbon–Metal Nanohybrids for Energy and Environmental Applications</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Nanotechnology has unprecedentedly revolutionized human societies over the past decades and will continue to advance our broad societal goals in the coming decades. The research, development, and particularly the application of engineered nanomaterials have shifted the focus from “less efficient” single-component nanomaterials toward “superior-performance”, next-generation multifunctional nanohybrids. Carbon nanomaterials (e.g., carbon nanotubes, graphene family nanomaterials, carbon dots, and graphitic carbon nitride) and metal/metal oxide nanoparticles (e.g., Ag, Au, CdS, Cu2O, MoS2, TiO2, and ZnO) combinations are the most commonly pursued nanohybrids (carbon–metal nanohybrids; CMNHs), which exhibit appealing properties and promising multifunctionalities for addressing multiple complex challenges faced by humanity at the critical energy–water–environment (EWE) nexus. In this frontier review, we first highlight the altered and newly emerging properties (e.g., electronic and optical attributes, particle size, shape, morphology, crystallinity, dimensionality, carbon/metal ratio, and hybridization mode) of CMNHs that are distinct from those of their parent component materials. We then illustrate how these important newly emerging properties and functions of CMNHs direct their performances at the EWE nexus including energy harvesting (e.g., H2O splitting and CO2 conversion), water treatment (e.g., contaminant removal and membrane technology), and environmental sensing and in situ nanoremediation. This review concludes with identifications of critical knowledge gaps and future research directions for maximizing the benefits of next-generation multifunctional CMNHs at the EWE nexus and beyond.</description><subject>Carbon</subject><subject>Carbon dioxide</subject><subject>Carbon nanotubes</subject><subject>Carbon nitride</subject><subject>Contaminants</subject><subject>Energy</subject><subject>Energy harvesting</subject><subject>Gold</subject><subject>Graphene</subject><subject>Graphite</subject><subject>Hybridization</subject><subject>Marine environment</subject><subject>Metals</subject><subject>Molybdenum disulfide</subject><subject>Morphology</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Nanostructures</subject><subject>Nanotechnology</subject><subject>Nanotubes</subject><subject>Nanotubes, Carbon</subject><subject>Optical properties</subject><subject>Pollutant removal</subject><subject>Silver</subject><subject>Titanium dioxide</subject><subject>Water pollution</subject><subject>Water treatment</subject><subject>Zinc oxide</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1UU1LwzAYDqLonJ69ScGjdEuaNG0uggy_YNOLgreQNKlWuqQm7XA3_4P_0F9i6ubQg6fk5X2-eB8AjhAcIZigsSj8SPt2xCREJMVbYIDSBMZpnqJtMIAQ4Zhh-rgH9r1_gRAmGOa7YA8jxBgiyQCoW_3WxlfaaCfayppo1tVtVXam6CdRRxPhpDWf7x8z3YbxVhj7vJSuUj4qrYsuAvFpGQmjwndROWvm2vTA86apq-Jb0x-AnVLUXh-u3yF4uLy4n1zH07urm8n5NBaEkTZGeSoyqmlIzRRKCCqZlCUlBVU6obpUSmKJUZZBmJKcMp0qIRVTtFCSlBTiIThb6TadnGtVhCRO1Lxx1Vy4Jbei4n83pnrmT3bBM5znEKMgcLIWcPa1C4flL7Zz4QyeJ0mKc0Ip6W3GK1ThrPdOlxsHBHlfCw-18J69riUwjn8H2-B_egiA0xWgZ248_5P7AnuInKQ</recordid><startdate>20190702</startdate><enddate>20190702</enddate><creator>Wang, Dengjun</creator><creator>Saleh, Navid B</creator><creator>Sun, Wenjie</creator><creator>Park, Chang Min</creator><creator>Shen, Chongyang</creator><creator>Aich, Nirupam</creator><creator>Peijnenburg, Willie J. G. M</creator><creator>Zhang, Wei</creator><creator>Jin, Yan</creator><creator>Su, Chunming</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2047-5260</orcidid><orcidid>https://orcid.org/0000-0003-0541-0300</orcidid><orcidid>https://orcid.org/0000-0003-1896-8127</orcidid><orcidid>https://orcid.org/0000-0001-6092-5783</orcidid><orcidid>https://orcid.org/0000-0002-2937-1732</orcidid></search><sort><creationdate>20190702</creationdate><title>Next-Generation Multifunctional Carbon–Metal Nanohybrids for Energy and Environmental Applications</title><author>Wang, Dengjun ; Saleh, Navid B ; Sun, Wenjie ; Park, Chang Min ; Shen, Chongyang ; Aich, Nirupam ; Peijnenburg, Willie J. G. M ; Zhang, Wei ; Jin, Yan ; Su, Chunming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a494t-185a76e60139d1241f9bbf64c6de26efddb3b31770054869e5dabd9d6cdb4f603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Carbon</topic><topic>Carbon dioxide</topic><topic>Carbon nanotubes</topic><topic>Carbon nitride</topic><topic>Contaminants</topic><topic>Energy</topic><topic>Energy harvesting</topic><topic>Gold</topic><topic>Graphene</topic><topic>Graphite</topic><topic>Hybridization</topic><topic>Marine environment</topic><topic>Metals</topic><topic>Molybdenum disulfide</topic><topic>Morphology</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Nanostructures</topic><topic>Nanotechnology</topic><topic>Nanotubes</topic><topic>Nanotubes, Carbon</topic><topic>Optical properties</topic><topic>Pollutant removal</topic><topic>Silver</topic><topic>Titanium dioxide</topic><topic>Water pollution</topic><topic>Water treatment</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Dengjun</creatorcontrib><creatorcontrib>Saleh, Navid B</creatorcontrib><creatorcontrib>Sun, Wenjie</creatorcontrib><creatorcontrib>Park, Chang Min</creatorcontrib><creatorcontrib>Shen, Chongyang</creatorcontrib><creatorcontrib>Aich, Nirupam</creatorcontrib><creatorcontrib>Peijnenburg, Willie J. G. M</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Jin, Yan</creatorcontrib><creatorcontrib>Su, Chunming</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Dengjun</au><au>Saleh, Navid B</au><au>Sun, Wenjie</au><au>Park, Chang Min</au><au>Shen, Chongyang</au><au>Aich, Nirupam</au><au>Peijnenburg, Willie J. G. M</au><au>Zhang, Wei</au><au>Jin, Yan</au><au>Su, Chunming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Next-Generation Multifunctional Carbon–Metal Nanohybrids for Energy and Environmental Applications</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2019-07-02</date><risdate>2019</risdate><volume>53</volume><issue>13</issue><spage>7265</spage><epage>7287</epage><pages>7265-7287</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><abstract>Nanotechnology has unprecedentedly revolutionized human societies over the past decades and will continue to advance our broad societal goals in the coming decades. The research, development, and particularly the application of engineered nanomaterials have shifted the focus from “less efficient” single-component nanomaterials toward “superior-performance”, next-generation multifunctional nanohybrids. Carbon nanomaterials (e.g., carbon nanotubes, graphene family nanomaterials, carbon dots, and graphitic carbon nitride) and metal/metal oxide nanoparticles (e.g., Ag, Au, CdS, Cu2O, MoS2, TiO2, and ZnO) combinations are the most commonly pursued nanohybrids (carbon–metal nanohybrids; CMNHs), which exhibit appealing properties and promising multifunctionalities for addressing multiple complex challenges faced by humanity at the critical energy–water–environment (EWE) nexus. In this frontier review, we first highlight the altered and newly emerging properties (e.g., electronic and optical attributes, particle size, shape, morphology, crystallinity, dimensionality, carbon/metal ratio, and hybridization mode) of CMNHs that are distinct from those of their parent component materials. We then illustrate how these important newly emerging properties and functions of CMNHs direct their performances at the EWE nexus including energy harvesting (e.g., H2O splitting and CO2 conversion), water treatment (e.g., contaminant removal and membrane technology), and environmental sensing and in situ nanoremediation. This review concludes with identifications of critical knowledge gaps and future research directions for maximizing the benefits of next-generation multifunctional CMNHs at the EWE nexus and beyond.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31199142</pmid><doi>10.1021/acs.est.9b01453</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-2047-5260</orcidid><orcidid>https://orcid.org/0000-0003-0541-0300</orcidid><orcidid>https://orcid.org/0000-0003-1896-8127</orcidid><orcidid>https://orcid.org/0000-0001-6092-5783</orcidid><orcidid>https://orcid.org/0000-0002-2937-1732</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2019-07, Vol.53 (13), p.7265-7287
issn 0013-936X
1520-5851
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7388031
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Carbon
Carbon dioxide
Carbon nanotubes
Carbon nitride
Contaminants
Energy
Energy harvesting
Gold
Graphene
Graphite
Hybridization
Marine environment
Metals
Molybdenum disulfide
Morphology
Nanomaterials
Nanoparticles
Nanostructures
Nanotechnology
Nanotubes
Nanotubes, Carbon
Optical properties
Pollutant removal
Silver
Titanium dioxide
Water pollution
Water treatment
Zinc oxide
title Next-Generation Multifunctional Carbon–Metal Nanohybrids for Energy and Environmental Applications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A57%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Next-Generation%20Multifunctional%20Carbon%E2%80%93Metal%20Nanohybrids%20for%20Energy%20and%20Environmental%20Applications&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Wang,%20Dengjun&rft.date=2019-07-02&rft.volume=53&rft.issue=13&rft.spage=7265&rft.epage=7287&rft.pages=7265-7287&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.9b01453&rft_dat=%3Cproquest_pubme%3E2253846640%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a494t-185a76e60139d1241f9bbf64c6de26efddb3b31770054869e5dabd9d6cdb4f603%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2253846640&rft_id=info:pmid/31199142&rfr_iscdi=true