Loading…
Next-Generation Multifunctional Carbon–Metal Nanohybrids for Energy and Environmental Applications
Nanotechnology has unprecedentedly revolutionized human societies over the past decades and will continue to advance our broad societal goals in the coming decades. The research, development, and particularly the application of engineered nanomaterials have shifted the focus from “less efficient” si...
Saved in:
Published in: | Environmental science & technology 2019-07, Vol.53 (13), p.7265-7287 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a494t-185a76e60139d1241f9bbf64c6de26efddb3b31770054869e5dabd9d6cdb4f603 |
---|---|
cites | cdi_FETCH-LOGICAL-a494t-185a76e60139d1241f9bbf64c6de26efddb3b31770054869e5dabd9d6cdb4f603 |
container_end_page | 7287 |
container_issue | 13 |
container_start_page | 7265 |
container_title | Environmental science & technology |
container_volume | 53 |
creator | Wang, Dengjun Saleh, Navid B Sun, Wenjie Park, Chang Min Shen, Chongyang Aich, Nirupam Peijnenburg, Willie J. G. M Zhang, Wei Jin, Yan Su, Chunming |
description | Nanotechnology has unprecedentedly revolutionized human societies over the past decades and will continue to advance our broad societal goals in the coming decades. The research, development, and particularly the application of engineered nanomaterials have shifted the focus from “less efficient” single-component nanomaterials toward “superior-performance”, next-generation multifunctional nanohybrids. Carbon nanomaterials (e.g., carbon nanotubes, graphene family nanomaterials, carbon dots, and graphitic carbon nitride) and metal/metal oxide nanoparticles (e.g., Ag, Au, CdS, Cu2O, MoS2, TiO2, and ZnO) combinations are the most commonly pursued nanohybrids (carbon–metal nanohybrids; CMNHs), which exhibit appealing properties and promising multifunctionalities for addressing multiple complex challenges faced by humanity at the critical energy–water–environment (EWE) nexus. In this frontier review, we first highlight the altered and newly emerging properties (e.g., electronic and optical attributes, particle size, shape, morphology, crystallinity, dimensionality, carbon/metal ratio, and hybridization mode) of CMNHs that are distinct from those of their parent component materials. We then illustrate how these important newly emerging properties and functions of CMNHs direct their performances at the EWE nexus including energy harvesting (e.g., H2O splitting and CO2 conversion), water treatment (e.g., contaminant removal and membrane technology), and environmental sensing and in situ nanoremediation. This review concludes with identifications of critical knowledge gaps and future research directions for maximizing the benefits of next-generation multifunctional CMNHs at the EWE nexus and beyond. |
doi_str_mv | 10.1021/acs.est.9b01453 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7388031</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2253846640</sourcerecordid><originalsourceid>FETCH-LOGICAL-a494t-185a76e60139d1241f9bbf64c6de26efddb3b31770054869e5dabd9d6cdb4f603</originalsourceid><addsrcrecordid>eNp1UU1LwzAYDqLonJ69ScGjdEuaNG0uggy_YNOLgreQNKlWuqQm7XA3_4P_0F9i6ubQg6fk5X2-eB8AjhAcIZigsSj8SPt2xCREJMVbYIDSBMZpnqJtMIAQ4Zhh-rgH9r1_gRAmGOa7YA8jxBgiyQCoW_3WxlfaaCfayppo1tVtVXam6CdRRxPhpDWf7x8z3YbxVhj7vJSuUj4qrYsuAvFpGQmjwndROWvm2vTA86apq-Jb0x-AnVLUXh-u3yF4uLy4n1zH07urm8n5NBaEkTZGeSoyqmlIzRRKCCqZlCUlBVU6obpUSmKJUZZBmJKcMp0qIRVTtFCSlBTiIThb6TadnGtVhCRO1Lxx1Vy4Jbei4n83pnrmT3bBM5znEKMgcLIWcPa1C4flL7Zz4QyeJ0mKc0Ip6W3GK1ThrPdOlxsHBHlfCw-18J69riUwjn8H2-B_egiA0xWgZ248_5P7AnuInKQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2253846640</pqid></control><display><type>article</type><title>Next-Generation Multifunctional Carbon–Metal Nanohybrids for Energy and Environmental Applications</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Wang, Dengjun ; Saleh, Navid B ; Sun, Wenjie ; Park, Chang Min ; Shen, Chongyang ; Aich, Nirupam ; Peijnenburg, Willie J. G. M ; Zhang, Wei ; Jin, Yan ; Su, Chunming</creator><creatorcontrib>Wang, Dengjun ; Saleh, Navid B ; Sun, Wenjie ; Park, Chang Min ; Shen, Chongyang ; Aich, Nirupam ; Peijnenburg, Willie J. G. M ; Zhang, Wei ; Jin, Yan ; Su, Chunming</creatorcontrib><description>Nanotechnology has unprecedentedly revolutionized human societies over the past decades and will continue to advance our broad societal goals in the coming decades. The research, development, and particularly the application of engineered nanomaterials have shifted the focus from “less efficient” single-component nanomaterials toward “superior-performance”, next-generation multifunctional nanohybrids. Carbon nanomaterials (e.g., carbon nanotubes, graphene family nanomaterials, carbon dots, and graphitic carbon nitride) and metal/metal oxide nanoparticles (e.g., Ag, Au, CdS, Cu2O, MoS2, TiO2, and ZnO) combinations are the most commonly pursued nanohybrids (carbon–metal nanohybrids; CMNHs), which exhibit appealing properties and promising multifunctionalities for addressing multiple complex challenges faced by humanity at the critical energy–water–environment (EWE) nexus. In this frontier review, we first highlight the altered and newly emerging properties (e.g., electronic and optical attributes, particle size, shape, morphology, crystallinity, dimensionality, carbon/metal ratio, and hybridization mode) of CMNHs that are distinct from those of their parent component materials. We then illustrate how these important newly emerging properties and functions of CMNHs direct their performances at the EWE nexus including energy harvesting (e.g., H2O splitting and CO2 conversion), water treatment (e.g., contaminant removal and membrane technology), and environmental sensing and in situ nanoremediation. This review concludes with identifications of critical knowledge gaps and future research directions for maximizing the benefits of next-generation multifunctional CMNHs at the EWE nexus and beyond.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.9b01453</identifier><identifier>PMID: 31199142</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Carbon ; Carbon dioxide ; Carbon nanotubes ; Carbon nitride ; Contaminants ; Energy ; Energy harvesting ; Gold ; Graphene ; Graphite ; Hybridization ; Marine environment ; Metals ; Molybdenum disulfide ; Morphology ; Nanomaterials ; Nanoparticles ; Nanostructures ; Nanotechnology ; Nanotubes ; Nanotubes, Carbon ; Optical properties ; Pollutant removal ; Silver ; Titanium dioxide ; Water pollution ; Water treatment ; Zinc oxide</subject><ispartof>Environmental science & technology, 2019-07, Vol.53 (13), p.7265-7287</ispartof><rights>Copyright American Chemical Society Jul 2, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a494t-185a76e60139d1241f9bbf64c6de26efddb3b31770054869e5dabd9d6cdb4f603</citedby><cites>FETCH-LOGICAL-a494t-185a76e60139d1241f9bbf64c6de26efddb3b31770054869e5dabd9d6cdb4f603</cites><orcidid>0000-0002-2047-5260 ; 0000-0003-0541-0300 ; 0000-0003-1896-8127 ; 0000-0001-6092-5783 ; 0000-0002-2937-1732</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31199142$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Dengjun</creatorcontrib><creatorcontrib>Saleh, Navid B</creatorcontrib><creatorcontrib>Sun, Wenjie</creatorcontrib><creatorcontrib>Park, Chang Min</creatorcontrib><creatorcontrib>Shen, Chongyang</creatorcontrib><creatorcontrib>Aich, Nirupam</creatorcontrib><creatorcontrib>Peijnenburg, Willie J. G. M</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Jin, Yan</creatorcontrib><creatorcontrib>Su, Chunming</creatorcontrib><title>Next-Generation Multifunctional Carbon–Metal Nanohybrids for Energy and Environmental Applications</title><title>Environmental science & technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Nanotechnology has unprecedentedly revolutionized human societies over the past decades and will continue to advance our broad societal goals in the coming decades. The research, development, and particularly the application of engineered nanomaterials have shifted the focus from “less efficient” single-component nanomaterials toward “superior-performance”, next-generation multifunctional nanohybrids. Carbon nanomaterials (e.g., carbon nanotubes, graphene family nanomaterials, carbon dots, and graphitic carbon nitride) and metal/metal oxide nanoparticles (e.g., Ag, Au, CdS, Cu2O, MoS2, TiO2, and ZnO) combinations are the most commonly pursued nanohybrids (carbon–metal nanohybrids; CMNHs), which exhibit appealing properties and promising multifunctionalities for addressing multiple complex challenges faced by humanity at the critical energy–water–environment (EWE) nexus. In this frontier review, we first highlight the altered and newly emerging properties (e.g., electronic and optical attributes, particle size, shape, morphology, crystallinity, dimensionality, carbon/metal ratio, and hybridization mode) of CMNHs that are distinct from those of their parent component materials. We then illustrate how these important newly emerging properties and functions of CMNHs direct their performances at the EWE nexus including energy harvesting (e.g., H2O splitting and CO2 conversion), water treatment (e.g., contaminant removal and membrane technology), and environmental sensing and in situ nanoremediation. This review concludes with identifications of critical knowledge gaps and future research directions for maximizing the benefits of next-generation multifunctional CMNHs at the EWE nexus and beyond.</description><subject>Carbon</subject><subject>Carbon dioxide</subject><subject>Carbon nanotubes</subject><subject>Carbon nitride</subject><subject>Contaminants</subject><subject>Energy</subject><subject>Energy harvesting</subject><subject>Gold</subject><subject>Graphene</subject><subject>Graphite</subject><subject>Hybridization</subject><subject>Marine environment</subject><subject>Metals</subject><subject>Molybdenum disulfide</subject><subject>Morphology</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Nanostructures</subject><subject>Nanotechnology</subject><subject>Nanotubes</subject><subject>Nanotubes, Carbon</subject><subject>Optical properties</subject><subject>Pollutant removal</subject><subject>Silver</subject><subject>Titanium dioxide</subject><subject>Water pollution</subject><subject>Water treatment</subject><subject>Zinc oxide</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1UU1LwzAYDqLonJ69ScGjdEuaNG0uggy_YNOLgreQNKlWuqQm7XA3_4P_0F9i6ubQg6fk5X2-eB8AjhAcIZigsSj8SPt2xCREJMVbYIDSBMZpnqJtMIAQ4Zhh-rgH9r1_gRAmGOa7YA8jxBgiyQCoW_3WxlfaaCfayppo1tVtVXam6CdRRxPhpDWf7x8z3YbxVhj7vJSuUj4qrYsuAvFpGQmjwndROWvm2vTA86apq-Jb0x-AnVLUXh-u3yF4uLy4n1zH07urm8n5NBaEkTZGeSoyqmlIzRRKCCqZlCUlBVU6obpUSmKJUZZBmJKcMp0qIRVTtFCSlBTiIThb6TadnGtVhCRO1Lxx1Vy4Jbei4n83pnrmT3bBM5znEKMgcLIWcPa1C4flL7Zz4QyeJ0mKc0Ip6W3GK1ThrPdOlxsHBHlfCw-18J69riUwjn8H2-B_egiA0xWgZ248_5P7AnuInKQ</recordid><startdate>20190702</startdate><enddate>20190702</enddate><creator>Wang, Dengjun</creator><creator>Saleh, Navid B</creator><creator>Sun, Wenjie</creator><creator>Park, Chang Min</creator><creator>Shen, Chongyang</creator><creator>Aich, Nirupam</creator><creator>Peijnenburg, Willie J. G. M</creator><creator>Zhang, Wei</creator><creator>Jin, Yan</creator><creator>Su, Chunming</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2047-5260</orcidid><orcidid>https://orcid.org/0000-0003-0541-0300</orcidid><orcidid>https://orcid.org/0000-0003-1896-8127</orcidid><orcidid>https://orcid.org/0000-0001-6092-5783</orcidid><orcidid>https://orcid.org/0000-0002-2937-1732</orcidid></search><sort><creationdate>20190702</creationdate><title>Next-Generation Multifunctional Carbon–Metal Nanohybrids for Energy and Environmental Applications</title><author>Wang, Dengjun ; Saleh, Navid B ; Sun, Wenjie ; Park, Chang Min ; Shen, Chongyang ; Aich, Nirupam ; Peijnenburg, Willie J. G. M ; Zhang, Wei ; Jin, Yan ; Su, Chunming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a494t-185a76e60139d1241f9bbf64c6de26efddb3b31770054869e5dabd9d6cdb4f603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Carbon</topic><topic>Carbon dioxide</topic><topic>Carbon nanotubes</topic><topic>Carbon nitride</topic><topic>Contaminants</topic><topic>Energy</topic><topic>Energy harvesting</topic><topic>Gold</topic><topic>Graphene</topic><topic>Graphite</topic><topic>Hybridization</topic><topic>Marine environment</topic><topic>Metals</topic><topic>Molybdenum disulfide</topic><topic>Morphology</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Nanostructures</topic><topic>Nanotechnology</topic><topic>Nanotubes</topic><topic>Nanotubes, Carbon</topic><topic>Optical properties</topic><topic>Pollutant removal</topic><topic>Silver</topic><topic>Titanium dioxide</topic><topic>Water pollution</topic><topic>Water treatment</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Dengjun</creatorcontrib><creatorcontrib>Saleh, Navid B</creatorcontrib><creatorcontrib>Sun, Wenjie</creatorcontrib><creatorcontrib>Park, Chang Min</creatorcontrib><creatorcontrib>Shen, Chongyang</creatorcontrib><creatorcontrib>Aich, Nirupam</creatorcontrib><creatorcontrib>Peijnenburg, Willie J. G. M</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Jin, Yan</creatorcontrib><creatorcontrib>Su, Chunming</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Environmental science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Dengjun</au><au>Saleh, Navid B</au><au>Sun, Wenjie</au><au>Park, Chang Min</au><au>Shen, Chongyang</au><au>Aich, Nirupam</au><au>Peijnenburg, Willie J. G. M</au><au>Zhang, Wei</au><au>Jin, Yan</au><au>Su, Chunming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Next-Generation Multifunctional Carbon–Metal Nanohybrids for Energy and Environmental Applications</atitle><jtitle>Environmental science & technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2019-07-02</date><risdate>2019</risdate><volume>53</volume><issue>13</issue><spage>7265</spage><epage>7287</epage><pages>7265-7287</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><abstract>Nanotechnology has unprecedentedly revolutionized human societies over the past decades and will continue to advance our broad societal goals in the coming decades. The research, development, and particularly the application of engineered nanomaterials have shifted the focus from “less efficient” single-component nanomaterials toward “superior-performance”, next-generation multifunctional nanohybrids. Carbon nanomaterials (e.g., carbon nanotubes, graphene family nanomaterials, carbon dots, and graphitic carbon nitride) and metal/metal oxide nanoparticles (e.g., Ag, Au, CdS, Cu2O, MoS2, TiO2, and ZnO) combinations are the most commonly pursued nanohybrids (carbon–metal nanohybrids; CMNHs), which exhibit appealing properties and promising multifunctionalities for addressing multiple complex challenges faced by humanity at the critical energy–water–environment (EWE) nexus. In this frontier review, we first highlight the altered and newly emerging properties (e.g., electronic and optical attributes, particle size, shape, morphology, crystallinity, dimensionality, carbon/metal ratio, and hybridization mode) of CMNHs that are distinct from those of their parent component materials. We then illustrate how these important newly emerging properties and functions of CMNHs direct their performances at the EWE nexus including energy harvesting (e.g., H2O splitting and CO2 conversion), water treatment (e.g., contaminant removal and membrane technology), and environmental sensing and in situ nanoremediation. This review concludes with identifications of critical knowledge gaps and future research directions for maximizing the benefits of next-generation multifunctional CMNHs at the EWE nexus and beyond.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31199142</pmid><doi>10.1021/acs.est.9b01453</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-2047-5260</orcidid><orcidid>https://orcid.org/0000-0003-0541-0300</orcidid><orcidid>https://orcid.org/0000-0003-1896-8127</orcidid><orcidid>https://orcid.org/0000-0001-6092-5783</orcidid><orcidid>https://orcid.org/0000-0002-2937-1732</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-936X |
ispartof | Environmental science & technology, 2019-07, Vol.53 (13), p.7265-7287 |
issn | 0013-936X 1520-5851 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7388031 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Carbon Carbon dioxide Carbon nanotubes Carbon nitride Contaminants Energy Energy harvesting Gold Graphene Graphite Hybridization Marine environment Metals Molybdenum disulfide Morphology Nanomaterials Nanoparticles Nanostructures Nanotechnology Nanotubes Nanotubes, Carbon Optical properties Pollutant removal Silver Titanium dioxide Water pollution Water treatment Zinc oxide |
title | Next-Generation Multifunctional Carbon–Metal Nanohybrids for Energy and Environmental Applications |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A57%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Next-Generation%20Multifunctional%20Carbon%E2%80%93Metal%20Nanohybrids%20for%20Energy%20and%20Environmental%20Applications&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Wang,%20Dengjun&rft.date=2019-07-02&rft.volume=53&rft.issue=13&rft.spage=7265&rft.epage=7287&rft.pages=7265-7287&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.9b01453&rft_dat=%3Cproquest_pubme%3E2253846640%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a494t-185a76e60139d1241f9bbf64c6de26efddb3b31770054869e5dabd9d6cdb4f603%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2253846640&rft_id=info:pmid/31199142&rfr_iscdi=true |