Loading…
The Impact of Mitochondrial Dysfunction on Dopaminergic Neurons in the Olfactory Bulb and Odor Detection
Understanding non-motor symptoms of Parkinson’s disease is important in order to unravel the underlying molecular mechanisms of the disease. Olfactory dysfunction is an early stage, non-motor symptom which occurs in 95% of Parkinson’s disease patients. Mitochondrial dysfunction is a key feature in P...
Saved in:
Published in: | Molecular neurobiology 2020-09, Vol.57 (9), p.3646-3657 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c446t-82ff49ee9171d6cc3b124af6debb0ac69717b37a546c5ae14aa0a1282407fc393 |
---|---|
cites | cdi_FETCH-LOGICAL-c446t-82ff49ee9171d6cc3b124af6debb0ac69717b37a546c5ae14aa0a1282407fc393 |
container_end_page | 3657 |
container_issue | 9 |
container_start_page | 3646 |
container_title | Molecular neurobiology |
container_volume | 57 |
creator | Paß, Thomas Aßfalg, Marlene Tolve, Marianna Blaess, Sandra Rothermel, Markus Wiesner, Rudolf J. Ricke, Konrad M. |
description | Understanding non-motor symptoms of Parkinson’s disease is important in order to unravel the underlying molecular mechanisms of the disease. Olfactory dysfunction is an early stage, non-motor symptom which occurs in 95% of Parkinson’s disease patients. Mitochondrial dysfunction is a key feature in Parkinson’s disease and importantly contributes to the selective loss of dopaminergic neurons the
substantia nigra pars compacta
. The olfactory bulb, the first olfactory processing station, also contains dopaminergic neurons, which modulate odor information and thereby enable odor detection as well as odor discrimination. MitoPark mice are a genetic model for Parkinson’s disease with severe mitochondrial dysfunction, reproducing the differential vulnerability of dopaminergic neurons in the midbrain. These animals were used to investigate the impact of mitochondrial dysfunction on olfactory-related behavior and olfactory bulb dopaminergic neuron survival. Odor detection was severely impaired in MitoPark mice. Interestingly, only the small anaxonic dopaminergic subpopulation, which is continuously replenished by neurogenesis, was moderately reduced in number, much less compared with dopaminergic neurons in the midbrain. As a potential compensatory response, an enhanced mobilization of progenitor cells was found in the subventricular zone. These results reveal a high robustness of dopaminergic neurons located in the olfactory bulb towards mitochondrial impairment, in striking contrast to their midbrain counterparts. |
doi_str_mv | 10.1007/s12035-020-01947-w |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7398899</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2429921807</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-82ff49ee9171d6cc3b124af6debb0ac69717b37a546c5ae14aa0a1282407fc393</originalsourceid><addsrcrecordid>eNp9kU1vEzEQhi0EoqHwBzhZ4rww_rYvSNDwUamQSzlbXq-duNrYwd5tlX_PtqlAXCqNNId53kcjvQi9JfCeAKgPjVBgogMKHRDDVXf3DK2IEKYjRNPnaAXasE5Jrs_Qq9ZuACgloF6iM0aF5FSLFdpd7wK-3B-cn3CJ-Eeait-VPNTkRrw-tjhnP6WS8TLrcnD7lEPdJo9_hrmW3HDKeFoUmzEuilKP-PM89tjlAW-GUvE6TOFB8Bq9iG5s4c3jPke_vn65vvjeXW2-XV58uuo853LqNI2RmxAMUWSQ3rOeUO6iHELfg_PSKKJ6ppzg0gsXCHcOHKGaclDRM8PO0ceT9zD3-zD4kKfqRnuoae_q0RaX7P-XnHZ2W26tYkZrcy949yio5fcc2mRvylzz8rOlgjEhAYh8kuLUGEo0qIWiJ8rX0loN8e8fBOx9h_bUoV06tA8d2rslxE6htsB5G-o_9ROpP8qYnxo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2429921807</pqid></control><display><type>article</type><title>The Impact of Mitochondrial Dysfunction on Dopaminergic Neurons in the Olfactory Bulb and Odor Detection</title><source>Springer Nature</source><creator>Paß, Thomas ; Aßfalg, Marlene ; Tolve, Marianna ; Blaess, Sandra ; Rothermel, Markus ; Wiesner, Rudolf J. ; Ricke, Konrad M.</creator><creatorcontrib>Paß, Thomas ; Aßfalg, Marlene ; Tolve, Marianna ; Blaess, Sandra ; Rothermel, Markus ; Wiesner, Rudolf J. ; Ricke, Konrad M.</creatorcontrib><description>Understanding non-motor symptoms of Parkinson’s disease is important in order to unravel the underlying molecular mechanisms of the disease. Olfactory dysfunction is an early stage, non-motor symptom which occurs in 95% of Parkinson’s disease patients. Mitochondrial dysfunction is a key feature in Parkinson’s disease and importantly contributes to the selective loss of dopaminergic neurons the
substantia nigra pars compacta
. The olfactory bulb, the first olfactory processing station, also contains dopaminergic neurons, which modulate odor information and thereby enable odor detection as well as odor discrimination. MitoPark mice are a genetic model for Parkinson’s disease with severe mitochondrial dysfunction, reproducing the differential vulnerability of dopaminergic neurons in the midbrain. These animals were used to investigate the impact of mitochondrial dysfunction on olfactory-related behavior and olfactory bulb dopaminergic neuron survival. Odor detection was severely impaired in MitoPark mice. Interestingly, only the small anaxonic dopaminergic subpopulation, which is continuously replenished by neurogenesis, was moderately reduced in number, much less compared with dopaminergic neurons in the midbrain. As a potential compensatory response, an enhanced mobilization of progenitor cells was found in the subventricular zone. These results reveal a high robustness of dopaminergic neurons located in the olfactory bulb towards mitochondrial impairment, in striking contrast to their midbrain counterparts.</description><identifier>ISSN: 0893-7648</identifier><identifier>EISSN: 1559-1182</identifier><identifier>DOI: 10.1007/s12035-020-01947-w</identifier><identifier>PMID: 32564285</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Biomedical and Life Sciences ; Biomedicine ; Cell Biology ; Dopamine receptors ; Information processing ; Mesencephalon ; Mitochondria ; Molecular modelling ; Movement disorders ; Neurobiology ; Neurodegenerative diseases ; Neurogenesis ; Neurology ; Neurons ; Neurosciences ; Odors ; Olfaction ; Olfactory bulb ; Olfactory discrimination ; Olfactory discrimination learning ; Parkinson's disease ; Progenitor cells ; Smell ; Stem cells ; Substantia nigra ; Subventricular zone</subject><ispartof>Molecular neurobiology, 2020-09, Vol.57 (9), p.3646-3657</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-82ff49ee9171d6cc3b124af6debb0ac69717b37a546c5ae14aa0a1282407fc393</citedby><cites>FETCH-LOGICAL-c446t-82ff49ee9171d6cc3b124af6debb0ac69717b37a546c5ae14aa0a1282407fc393</cites><orcidid>0000-0002-9915-7360</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,883,27907,27908</link.rule.ids></links><search><creatorcontrib>Paß, Thomas</creatorcontrib><creatorcontrib>Aßfalg, Marlene</creatorcontrib><creatorcontrib>Tolve, Marianna</creatorcontrib><creatorcontrib>Blaess, Sandra</creatorcontrib><creatorcontrib>Rothermel, Markus</creatorcontrib><creatorcontrib>Wiesner, Rudolf J.</creatorcontrib><creatorcontrib>Ricke, Konrad M.</creatorcontrib><title>The Impact of Mitochondrial Dysfunction on Dopaminergic Neurons in the Olfactory Bulb and Odor Detection</title><title>Molecular neurobiology</title><addtitle>Mol Neurobiol</addtitle><description>Understanding non-motor symptoms of Parkinson’s disease is important in order to unravel the underlying molecular mechanisms of the disease. Olfactory dysfunction is an early stage, non-motor symptom which occurs in 95% of Parkinson’s disease patients. Mitochondrial dysfunction is a key feature in Parkinson’s disease and importantly contributes to the selective loss of dopaminergic neurons the
substantia nigra pars compacta
. The olfactory bulb, the first olfactory processing station, also contains dopaminergic neurons, which modulate odor information and thereby enable odor detection as well as odor discrimination. MitoPark mice are a genetic model for Parkinson’s disease with severe mitochondrial dysfunction, reproducing the differential vulnerability of dopaminergic neurons in the midbrain. These animals were used to investigate the impact of mitochondrial dysfunction on olfactory-related behavior and olfactory bulb dopaminergic neuron survival. Odor detection was severely impaired in MitoPark mice. Interestingly, only the small anaxonic dopaminergic subpopulation, which is continuously replenished by neurogenesis, was moderately reduced in number, much less compared with dopaminergic neurons in the midbrain. As a potential compensatory response, an enhanced mobilization of progenitor cells was found in the subventricular zone. These results reveal a high robustness of dopaminergic neurons located in the olfactory bulb towards mitochondrial impairment, in striking contrast to their midbrain counterparts.</description><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cell Biology</subject><subject>Dopamine receptors</subject><subject>Information processing</subject><subject>Mesencephalon</subject><subject>Mitochondria</subject><subject>Molecular modelling</subject><subject>Movement disorders</subject><subject>Neurobiology</subject><subject>Neurodegenerative diseases</subject><subject>Neurogenesis</subject><subject>Neurology</subject><subject>Neurons</subject><subject>Neurosciences</subject><subject>Odors</subject><subject>Olfaction</subject><subject>Olfactory bulb</subject><subject>Olfactory discrimination</subject><subject>Olfactory discrimination learning</subject><subject>Parkinson's disease</subject><subject>Progenitor cells</subject><subject>Smell</subject><subject>Stem cells</subject><subject>Substantia nigra</subject><subject>Subventricular zone</subject><issn>0893-7648</issn><issn>1559-1182</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kU1vEzEQhi0EoqHwBzhZ4rww_rYvSNDwUamQSzlbXq-duNrYwd5tlX_PtqlAXCqNNId53kcjvQi9JfCeAKgPjVBgogMKHRDDVXf3DK2IEKYjRNPnaAXasE5Jrs_Qq9ZuACgloF6iM0aF5FSLFdpd7wK-3B-cn3CJ-Eeait-VPNTkRrw-tjhnP6WS8TLrcnD7lEPdJo9_hrmW3HDKeFoUmzEuilKP-PM89tjlAW-GUvE6TOFB8Bq9iG5s4c3jPke_vn65vvjeXW2-XV58uuo853LqNI2RmxAMUWSQ3rOeUO6iHELfg_PSKKJ6ppzg0gsXCHcOHKGaclDRM8PO0ceT9zD3-zD4kKfqRnuoae_q0RaX7P-XnHZ2W26tYkZrcy949yio5fcc2mRvylzz8rOlgjEhAYh8kuLUGEo0qIWiJ8rX0loN8e8fBOx9h_bUoV06tA8d2rslxE6htsB5G-o_9ROpP8qYnxo</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Paß, Thomas</creator><creator>Aßfalg, Marlene</creator><creator>Tolve, Marianna</creator><creator>Blaess, Sandra</creator><creator>Rothermel, Markus</creator><creator>Wiesner, Rudolf J.</creator><creator>Ricke, Konrad M.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9915-7360</orcidid></search><sort><creationdate>20200901</creationdate><title>The Impact of Mitochondrial Dysfunction on Dopaminergic Neurons in the Olfactory Bulb and Odor Detection</title><author>Paß, Thomas ; Aßfalg, Marlene ; Tolve, Marianna ; Blaess, Sandra ; Rothermel, Markus ; Wiesner, Rudolf J. ; Ricke, Konrad M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-82ff49ee9171d6cc3b124af6debb0ac69717b37a546c5ae14aa0a1282407fc393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cell Biology</topic><topic>Dopamine receptors</topic><topic>Information processing</topic><topic>Mesencephalon</topic><topic>Mitochondria</topic><topic>Molecular modelling</topic><topic>Movement disorders</topic><topic>Neurobiology</topic><topic>Neurodegenerative diseases</topic><topic>Neurogenesis</topic><topic>Neurology</topic><topic>Neurons</topic><topic>Neurosciences</topic><topic>Odors</topic><topic>Olfaction</topic><topic>Olfactory bulb</topic><topic>Olfactory discrimination</topic><topic>Olfactory discrimination learning</topic><topic>Parkinson's disease</topic><topic>Progenitor cells</topic><topic>Smell</topic><topic>Stem cells</topic><topic>Substantia nigra</topic><topic>Subventricular zone</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paß, Thomas</creatorcontrib><creatorcontrib>Aßfalg, Marlene</creatorcontrib><creatorcontrib>Tolve, Marianna</creatorcontrib><creatorcontrib>Blaess, Sandra</creatorcontrib><creatorcontrib>Rothermel, Markus</creatorcontrib><creatorcontrib>Wiesner, Rudolf J.</creatorcontrib><creatorcontrib>Ricke, Konrad M.</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Psychology Journals</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular neurobiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paß, Thomas</au><au>Aßfalg, Marlene</au><au>Tolve, Marianna</au><au>Blaess, Sandra</au><au>Rothermel, Markus</au><au>Wiesner, Rudolf J.</au><au>Ricke, Konrad M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Impact of Mitochondrial Dysfunction on Dopaminergic Neurons in the Olfactory Bulb and Odor Detection</atitle><jtitle>Molecular neurobiology</jtitle><stitle>Mol Neurobiol</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>57</volume><issue>9</issue><spage>3646</spage><epage>3657</epage><pages>3646-3657</pages><issn>0893-7648</issn><eissn>1559-1182</eissn><abstract>Understanding non-motor symptoms of Parkinson’s disease is important in order to unravel the underlying molecular mechanisms of the disease. Olfactory dysfunction is an early stage, non-motor symptom which occurs in 95% of Parkinson’s disease patients. Mitochondrial dysfunction is a key feature in Parkinson’s disease and importantly contributes to the selective loss of dopaminergic neurons the
substantia nigra pars compacta
. The olfactory bulb, the first olfactory processing station, also contains dopaminergic neurons, which modulate odor information and thereby enable odor detection as well as odor discrimination. MitoPark mice are a genetic model for Parkinson’s disease with severe mitochondrial dysfunction, reproducing the differential vulnerability of dopaminergic neurons in the midbrain. These animals were used to investigate the impact of mitochondrial dysfunction on olfactory-related behavior and olfactory bulb dopaminergic neuron survival. Odor detection was severely impaired in MitoPark mice. Interestingly, only the small anaxonic dopaminergic subpopulation, which is continuously replenished by neurogenesis, was moderately reduced in number, much less compared with dopaminergic neurons in the midbrain. As a potential compensatory response, an enhanced mobilization of progenitor cells was found in the subventricular zone. These results reveal a high robustness of dopaminergic neurons located in the olfactory bulb towards mitochondrial impairment, in striking contrast to their midbrain counterparts.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>32564285</pmid><doi>10.1007/s12035-020-01947-w</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9915-7360</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0893-7648 |
ispartof | Molecular neurobiology, 2020-09, Vol.57 (9), p.3646-3657 |
issn | 0893-7648 1559-1182 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7398899 |
source | Springer Nature |
subjects | Biomedical and Life Sciences Biomedicine Cell Biology Dopamine receptors Information processing Mesencephalon Mitochondria Molecular modelling Movement disorders Neurobiology Neurodegenerative diseases Neurogenesis Neurology Neurons Neurosciences Odors Olfaction Olfactory bulb Olfactory discrimination Olfactory discrimination learning Parkinson's disease Progenitor cells Smell Stem cells Substantia nigra Subventricular zone |
title | The Impact of Mitochondrial Dysfunction on Dopaminergic Neurons in the Olfactory Bulb and Odor Detection |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T05%3A13%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Impact%20of%20Mitochondrial%20Dysfunction%20on%20Dopaminergic%20Neurons%20in%20the%20Olfactory%20Bulb%20and%20Odor%20Detection&rft.jtitle=Molecular%20neurobiology&rft.au=Pa%C3%9F,%20Thomas&rft.date=2020-09-01&rft.volume=57&rft.issue=9&rft.spage=3646&rft.epage=3657&rft.pages=3646-3657&rft.issn=0893-7648&rft.eissn=1559-1182&rft_id=info:doi/10.1007/s12035-020-01947-w&rft_dat=%3Cproquest_pubme%3E2429921807%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c446t-82ff49ee9171d6cc3b124af6debb0ac69717b37a546c5ae14aa0a1282407fc393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2429921807&rft_id=info:pmid/32564285&rfr_iscdi=true |