Loading…

The Impact of Mitochondrial Dysfunction on Dopaminergic Neurons in the Olfactory Bulb and Odor Detection

Understanding non-motor symptoms of Parkinson’s disease is important in order to unravel the underlying molecular mechanisms of the disease. Olfactory dysfunction is an early stage, non-motor symptom which occurs in 95% of Parkinson’s disease patients. Mitochondrial dysfunction is a key feature in P...

Full description

Saved in:
Bibliographic Details
Published in:Molecular neurobiology 2020-09, Vol.57 (9), p.3646-3657
Main Authors: Paß, Thomas, Aßfalg, Marlene, Tolve, Marianna, Blaess, Sandra, Rothermel, Markus, Wiesner, Rudolf J., Ricke, Konrad M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c446t-82ff49ee9171d6cc3b124af6debb0ac69717b37a546c5ae14aa0a1282407fc393
cites cdi_FETCH-LOGICAL-c446t-82ff49ee9171d6cc3b124af6debb0ac69717b37a546c5ae14aa0a1282407fc393
container_end_page 3657
container_issue 9
container_start_page 3646
container_title Molecular neurobiology
container_volume 57
creator Paß, Thomas
Aßfalg, Marlene
Tolve, Marianna
Blaess, Sandra
Rothermel, Markus
Wiesner, Rudolf J.
Ricke, Konrad M.
description Understanding non-motor symptoms of Parkinson’s disease is important in order to unravel the underlying molecular mechanisms of the disease. Olfactory dysfunction is an early stage, non-motor symptom which occurs in 95% of Parkinson’s disease patients. Mitochondrial dysfunction is a key feature in Parkinson’s disease and importantly contributes to the selective loss of dopaminergic neurons the substantia nigra pars compacta . The olfactory bulb, the first olfactory processing station, also contains dopaminergic neurons, which modulate odor information and thereby enable odor detection as well as odor discrimination. MitoPark mice are a genetic model for Parkinson’s disease with severe mitochondrial dysfunction, reproducing the differential vulnerability of dopaminergic neurons in the midbrain. These animals were used to investigate the impact of mitochondrial dysfunction on olfactory-related behavior and olfactory bulb dopaminergic neuron survival. Odor detection was severely impaired in MitoPark mice. Interestingly, only the small anaxonic dopaminergic subpopulation, which is continuously replenished by neurogenesis, was moderately reduced in number, much less compared with dopaminergic neurons in the midbrain. As a potential compensatory response, an enhanced mobilization of progenitor cells was found in the subventricular zone. These results reveal a high robustness of dopaminergic neurons located in the olfactory bulb towards mitochondrial impairment, in striking contrast to their midbrain counterparts.
doi_str_mv 10.1007/s12035-020-01947-w
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7398899</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2429921807</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-82ff49ee9171d6cc3b124af6debb0ac69717b37a546c5ae14aa0a1282407fc393</originalsourceid><addsrcrecordid>eNp9kU1vEzEQhi0EoqHwBzhZ4rww_rYvSNDwUamQSzlbXq-duNrYwd5tlX_PtqlAXCqNNId53kcjvQi9JfCeAKgPjVBgogMKHRDDVXf3DK2IEKYjRNPnaAXasE5Jrs_Qq9ZuACgloF6iM0aF5FSLFdpd7wK-3B-cn3CJ-Eeait-VPNTkRrw-tjhnP6WS8TLrcnD7lEPdJo9_hrmW3HDKeFoUmzEuilKP-PM89tjlAW-GUvE6TOFB8Bq9iG5s4c3jPke_vn65vvjeXW2-XV58uuo853LqNI2RmxAMUWSQ3rOeUO6iHELfg_PSKKJ6ppzg0gsXCHcOHKGaclDRM8PO0ceT9zD3-zD4kKfqRnuoae_q0RaX7P-XnHZ2W26tYkZrcy949yio5fcc2mRvylzz8rOlgjEhAYh8kuLUGEo0qIWiJ8rX0loN8e8fBOx9h_bUoV06tA8d2rslxE6htsB5G-o_9ROpP8qYnxo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2429921807</pqid></control><display><type>article</type><title>The Impact of Mitochondrial Dysfunction on Dopaminergic Neurons in the Olfactory Bulb and Odor Detection</title><source>Springer Nature</source><creator>Paß, Thomas ; Aßfalg, Marlene ; Tolve, Marianna ; Blaess, Sandra ; Rothermel, Markus ; Wiesner, Rudolf J. ; Ricke, Konrad M.</creator><creatorcontrib>Paß, Thomas ; Aßfalg, Marlene ; Tolve, Marianna ; Blaess, Sandra ; Rothermel, Markus ; Wiesner, Rudolf J. ; Ricke, Konrad M.</creatorcontrib><description>Understanding non-motor symptoms of Parkinson’s disease is important in order to unravel the underlying molecular mechanisms of the disease. Olfactory dysfunction is an early stage, non-motor symptom which occurs in 95% of Parkinson’s disease patients. Mitochondrial dysfunction is a key feature in Parkinson’s disease and importantly contributes to the selective loss of dopaminergic neurons the substantia nigra pars compacta . The olfactory bulb, the first olfactory processing station, also contains dopaminergic neurons, which modulate odor information and thereby enable odor detection as well as odor discrimination. MitoPark mice are a genetic model for Parkinson’s disease with severe mitochondrial dysfunction, reproducing the differential vulnerability of dopaminergic neurons in the midbrain. These animals were used to investigate the impact of mitochondrial dysfunction on olfactory-related behavior and olfactory bulb dopaminergic neuron survival. Odor detection was severely impaired in MitoPark mice. Interestingly, only the small anaxonic dopaminergic subpopulation, which is continuously replenished by neurogenesis, was moderately reduced in number, much less compared with dopaminergic neurons in the midbrain. As a potential compensatory response, an enhanced mobilization of progenitor cells was found in the subventricular zone. These results reveal a high robustness of dopaminergic neurons located in the olfactory bulb towards mitochondrial impairment, in striking contrast to their midbrain counterparts.</description><identifier>ISSN: 0893-7648</identifier><identifier>EISSN: 1559-1182</identifier><identifier>DOI: 10.1007/s12035-020-01947-w</identifier><identifier>PMID: 32564285</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Biomedical and Life Sciences ; Biomedicine ; Cell Biology ; Dopamine receptors ; Information processing ; Mesencephalon ; Mitochondria ; Molecular modelling ; Movement disorders ; Neurobiology ; Neurodegenerative diseases ; Neurogenesis ; Neurology ; Neurons ; Neurosciences ; Odors ; Olfaction ; Olfactory bulb ; Olfactory discrimination ; Olfactory discrimination learning ; Parkinson's disease ; Progenitor cells ; Smell ; Stem cells ; Substantia nigra ; Subventricular zone</subject><ispartof>Molecular neurobiology, 2020-09, Vol.57 (9), p.3646-3657</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-82ff49ee9171d6cc3b124af6debb0ac69717b37a546c5ae14aa0a1282407fc393</citedby><cites>FETCH-LOGICAL-c446t-82ff49ee9171d6cc3b124af6debb0ac69717b37a546c5ae14aa0a1282407fc393</cites><orcidid>0000-0002-9915-7360</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,883,27907,27908</link.rule.ids></links><search><creatorcontrib>Paß, Thomas</creatorcontrib><creatorcontrib>Aßfalg, Marlene</creatorcontrib><creatorcontrib>Tolve, Marianna</creatorcontrib><creatorcontrib>Blaess, Sandra</creatorcontrib><creatorcontrib>Rothermel, Markus</creatorcontrib><creatorcontrib>Wiesner, Rudolf J.</creatorcontrib><creatorcontrib>Ricke, Konrad M.</creatorcontrib><title>The Impact of Mitochondrial Dysfunction on Dopaminergic Neurons in the Olfactory Bulb and Odor Detection</title><title>Molecular neurobiology</title><addtitle>Mol Neurobiol</addtitle><description>Understanding non-motor symptoms of Parkinson’s disease is important in order to unravel the underlying molecular mechanisms of the disease. Olfactory dysfunction is an early stage, non-motor symptom which occurs in 95% of Parkinson’s disease patients. Mitochondrial dysfunction is a key feature in Parkinson’s disease and importantly contributes to the selective loss of dopaminergic neurons the substantia nigra pars compacta . The olfactory bulb, the first olfactory processing station, also contains dopaminergic neurons, which modulate odor information and thereby enable odor detection as well as odor discrimination. MitoPark mice are a genetic model for Parkinson’s disease with severe mitochondrial dysfunction, reproducing the differential vulnerability of dopaminergic neurons in the midbrain. These animals were used to investigate the impact of mitochondrial dysfunction on olfactory-related behavior and olfactory bulb dopaminergic neuron survival. Odor detection was severely impaired in MitoPark mice. Interestingly, only the small anaxonic dopaminergic subpopulation, which is continuously replenished by neurogenesis, was moderately reduced in number, much less compared with dopaminergic neurons in the midbrain. As a potential compensatory response, an enhanced mobilization of progenitor cells was found in the subventricular zone. These results reveal a high robustness of dopaminergic neurons located in the olfactory bulb towards mitochondrial impairment, in striking contrast to their midbrain counterparts.</description><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cell Biology</subject><subject>Dopamine receptors</subject><subject>Information processing</subject><subject>Mesencephalon</subject><subject>Mitochondria</subject><subject>Molecular modelling</subject><subject>Movement disorders</subject><subject>Neurobiology</subject><subject>Neurodegenerative diseases</subject><subject>Neurogenesis</subject><subject>Neurology</subject><subject>Neurons</subject><subject>Neurosciences</subject><subject>Odors</subject><subject>Olfaction</subject><subject>Olfactory bulb</subject><subject>Olfactory discrimination</subject><subject>Olfactory discrimination learning</subject><subject>Parkinson's disease</subject><subject>Progenitor cells</subject><subject>Smell</subject><subject>Stem cells</subject><subject>Substantia nigra</subject><subject>Subventricular zone</subject><issn>0893-7648</issn><issn>1559-1182</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kU1vEzEQhi0EoqHwBzhZ4rww_rYvSNDwUamQSzlbXq-duNrYwd5tlX_PtqlAXCqNNId53kcjvQi9JfCeAKgPjVBgogMKHRDDVXf3DK2IEKYjRNPnaAXasE5Jrs_Qq9ZuACgloF6iM0aF5FSLFdpd7wK-3B-cn3CJ-Eeait-VPNTkRrw-tjhnP6WS8TLrcnD7lEPdJo9_hrmW3HDKeFoUmzEuilKP-PM89tjlAW-GUvE6TOFB8Bq9iG5s4c3jPke_vn65vvjeXW2-XV58uuo853LqNI2RmxAMUWSQ3rOeUO6iHELfg_PSKKJ6ppzg0gsXCHcOHKGaclDRM8PO0ceT9zD3-zD4kKfqRnuoae_q0RaX7P-XnHZ2W26tYkZrcy949yio5fcc2mRvylzz8rOlgjEhAYh8kuLUGEo0qIWiJ8rX0loN8e8fBOx9h_bUoV06tA8d2rslxE6htsB5G-o_9ROpP8qYnxo</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Paß, Thomas</creator><creator>Aßfalg, Marlene</creator><creator>Tolve, Marianna</creator><creator>Blaess, Sandra</creator><creator>Rothermel, Markus</creator><creator>Wiesner, Rudolf J.</creator><creator>Ricke, Konrad M.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9915-7360</orcidid></search><sort><creationdate>20200901</creationdate><title>The Impact of Mitochondrial Dysfunction on Dopaminergic Neurons in the Olfactory Bulb and Odor Detection</title><author>Paß, Thomas ; Aßfalg, Marlene ; Tolve, Marianna ; Blaess, Sandra ; Rothermel, Markus ; Wiesner, Rudolf J. ; Ricke, Konrad M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-82ff49ee9171d6cc3b124af6debb0ac69717b37a546c5ae14aa0a1282407fc393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cell Biology</topic><topic>Dopamine receptors</topic><topic>Information processing</topic><topic>Mesencephalon</topic><topic>Mitochondria</topic><topic>Molecular modelling</topic><topic>Movement disorders</topic><topic>Neurobiology</topic><topic>Neurodegenerative diseases</topic><topic>Neurogenesis</topic><topic>Neurology</topic><topic>Neurons</topic><topic>Neurosciences</topic><topic>Odors</topic><topic>Olfaction</topic><topic>Olfactory bulb</topic><topic>Olfactory discrimination</topic><topic>Olfactory discrimination learning</topic><topic>Parkinson's disease</topic><topic>Progenitor cells</topic><topic>Smell</topic><topic>Stem cells</topic><topic>Substantia nigra</topic><topic>Subventricular zone</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paß, Thomas</creatorcontrib><creatorcontrib>Aßfalg, Marlene</creatorcontrib><creatorcontrib>Tolve, Marianna</creatorcontrib><creatorcontrib>Blaess, Sandra</creatorcontrib><creatorcontrib>Rothermel, Markus</creatorcontrib><creatorcontrib>Wiesner, Rudolf J.</creatorcontrib><creatorcontrib>Ricke, Konrad M.</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Psychology Journals</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular neurobiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paß, Thomas</au><au>Aßfalg, Marlene</au><au>Tolve, Marianna</au><au>Blaess, Sandra</au><au>Rothermel, Markus</au><au>Wiesner, Rudolf J.</au><au>Ricke, Konrad M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Impact of Mitochondrial Dysfunction on Dopaminergic Neurons in the Olfactory Bulb and Odor Detection</atitle><jtitle>Molecular neurobiology</jtitle><stitle>Mol Neurobiol</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>57</volume><issue>9</issue><spage>3646</spage><epage>3657</epage><pages>3646-3657</pages><issn>0893-7648</issn><eissn>1559-1182</eissn><abstract>Understanding non-motor symptoms of Parkinson’s disease is important in order to unravel the underlying molecular mechanisms of the disease. Olfactory dysfunction is an early stage, non-motor symptom which occurs in 95% of Parkinson’s disease patients. Mitochondrial dysfunction is a key feature in Parkinson’s disease and importantly contributes to the selective loss of dopaminergic neurons the substantia nigra pars compacta . The olfactory bulb, the first olfactory processing station, also contains dopaminergic neurons, which modulate odor information and thereby enable odor detection as well as odor discrimination. MitoPark mice are a genetic model for Parkinson’s disease with severe mitochondrial dysfunction, reproducing the differential vulnerability of dopaminergic neurons in the midbrain. These animals were used to investigate the impact of mitochondrial dysfunction on olfactory-related behavior and olfactory bulb dopaminergic neuron survival. Odor detection was severely impaired in MitoPark mice. Interestingly, only the small anaxonic dopaminergic subpopulation, which is continuously replenished by neurogenesis, was moderately reduced in number, much less compared with dopaminergic neurons in the midbrain. As a potential compensatory response, an enhanced mobilization of progenitor cells was found in the subventricular zone. These results reveal a high robustness of dopaminergic neurons located in the olfactory bulb towards mitochondrial impairment, in striking contrast to their midbrain counterparts.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>32564285</pmid><doi>10.1007/s12035-020-01947-w</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9915-7360</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0893-7648
ispartof Molecular neurobiology, 2020-09, Vol.57 (9), p.3646-3657
issn 0893-7648
1559-1182
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7398899
source Springer Nature
subjects Biomedical and Life Sciences
Biomedicine
Cell Biology
Dopamine receptors
Information processing
Mesencephalon
Mitochondria
Molecular modelling
Movement disorders
Neurobiology
Neurodegenerative diseases
Neurogenesis
Neurology
Neurons
Neurosciences
Odors
Olfaction
Olfactory bulb
Olfactory discrimination
Olfactory discrimination learning
Parkinson's disease
Progenitor cells
Smell
Stem cells
Substantia nigra
Subventricular zone
title The Impact of Mitochondrial Dysfunction on Dopaminergic Neurons in the Olfactory Bulb and Odor Detection
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T05%3A13%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Impact%20of%20Mitochondrial%20Dysfunction%20on%20Dopaminergic%20Neurons%20in%20the%20Olfactory%20Bulb%20and%20Odor%20Detection&rft.jtitle=Molecular%20neurobiology&rft.au=Pa%C3%9F,%20Thomas&rft.date=2020-09-01&rft.volume=57&rft.issue=9&rft.spage=3646&rft.epage=3657&rft.pages=3646-3657&rft.issn=0893-7648&rft.eissn=1559-1182&rft_id=info:doi/10.1007/s12035-020-01947-w&rft_dat=%3Cproquest_pubme%3E2429921807%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c446t-82ff49ee9171d6cc3b124af6debb0ac69717b37a546c5ae14aa0a1282407fc393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2429921807&rft_id=info:pmid/32564285&rfr_iscdi=true