Loading…

Selective NADH communication from α-ketoglutarate dehydrogenase to mitochondrial transhydrogenase prevents reactive oxygen species formation under reducing conditions in the heart

In heart failure, a functional block of complex I of the respiratory chain provokes superoxide generation, which is transformed to H 2 O 2 by dismutation. The Krebs cycle produces NADH, which delivers electrons to complex I, and NADPH for H 2 O 2 elimination via isocitrate dehydrogenase and nicotina...

Full description

Saved in:
Bibliographic Details
Published in:Basic research in cardiology 2020-09, Vol.115 (5), p.53, Article 53
Main Authors: Wagner, Michael, Bertero, Edoardo, Nickel, Alexander, Kohlhaas, Michael, Gibson, Gary E., Heggermont, Ward, Heymans, Stephane, Maack, Christoph
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c470t-301970f3be351db9641597a8c857c2cf52fd08eabfaa0425a078487251b0be233
cites cdi_FETCH-LOGICAL-c470t-301970f3be351db9641597a8c857c2cf52fd08eabfaa0425a078487251b0be233
container_end_page
container_issue 5
container_start_page 53
container_title Basic research in cardiology
container_volume 115
creator Wagner, Michael
Bertero, Edoardo
Nickel, Alexander
Kohlhaas, Michael
Gibson, Gary E.
Heggermont, Ward
Heymans, Stephane
Maack, Christoph
description In heart failure, a functional block of complex I of the respiratory chain provokes superoxide generation, which is transformed to H 2 O 2 by dismutation. The Krebs cycle produces NADH, which delivers electrons to complex I, and NADPH for H 2 O 2 elimination via isocitrate dehydrogenase and nicotinamide nucleotide transhydrogenase (NNT). At high NADH levels, α-ketoglutarate dehydrogenase (α-KGDH) is a major source of superoxide in skeletal muscle mitochondria with low NNT activity. Here, we analyzed how α-KGDH and NNT control H 2 O 2 emission in cardiac mitochondria. In cardiac mitochondria from NNT-competent BL/6N mice, H 2 O 2 emission is equally low with pyruvate/malate (P/M) or α-ketoglutarate (α-KG) as substrates. Complex I inhibition with rotenone increases H 2 O 2 emission from P/M, but not α-KG respiring mitochondria, which is potentiated by depleting H 2 O 2 -eliminating capacity. Conversely, in NNT-deficient BL/6J mitochondria, H 2 O 2 emission is higher with α-KG than with P/M as substrate, and further potentiated by complex I blockade. Prior depletion of H 2 O 2 -eliminating capacity increases H 2 O 2 emission from P/M, but not α-KG respiring mitochondria. In cardiac myocytes, downregulation of α-KGDH activity impaired dynamic mitochondrial redox adaptation during workload transitions, without increasing H 2 O 2 emission. In conclusion, NADH from α-KGDH selectively shuttles to NNT for NADPH formation rather than to complex I of the respiratory chain for ATP production. Therefore, α-KGDH plays a key role for H 2 O 2 elimination, but is not a relevant source of superoxide in heart. In heart failure, α-KGDH/NNT-dependent NADPH formation ameliorates oxidative stress imposed by complex I blockade. Downregulation of α-KGDH may, therefore, predispose to oxidative stress in heart failure.
doi_str_mv 10.1007/s00395-020-0815-1
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7399685</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2430379345</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-301970f3be351db9641597a8c857c2cf52fd08eabfaa0425a078487251b0be233</originalsourceid><addsrcrecordid>eNp1ks2KFDEUhQtRnHb0AdxIwI2b0puf6ko2wjD-jDDoQl2HVOpWd8aqpE1Sjf1Ygs_hM5mmxnEUXCVwvnvuPXCq6jGF5xSgfZEAuGpqYFCDpE1N71QrKnj5SOB3qxVwgFoKJk-qByldAVCxXtP71QlnrZBMqlX14yOOaLPbI3l_9uqC2DBNs3fWZBc8GWKYyM_v9RfMYTPO2USTkfS4PfQxbNCbhCQHMrkc7Db4PjozkhyNT7eJXcQ9-pxIRLOsCt8ORSNph9ZhIkOI07Jw9j3GwvWzdX5TrvG9OwqJOE_yFskWTcwPq3uDGRM-un5Pq89vXn86v6gvP7x9d352WVvRQq45UNXCwDvkDe07tRa0Ua2RVjatZXZo2NCDRNMNxoBgjYFWCtmyhnbQIeP8tHq5-O7mbsLelhDRjHoX3WTiQQfj9N-Kd1u9CXvdcqXWsikGz64NYvg6Y8p6csniOBqPYU6aCQ68VVwc0af_oFdhjr7EKxRTilElVKHoQtkYUoo43BxDQR87oZdO6NIJfeyEpmXmye0UNxO_S1AAtgCpSH6D8c_q_7v-ArN6yLM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2429921949</pqid></control><display><type>article</type><title>Selective NADH communication from α-ketoglutarate dehydrogenase to mitochondrial transhydrogenase prevents reactive oxygen species formation under reducing conditions in the heart</title><source>Springer Nature</source><creator>Wagner, Michael ; Bertero, Edoardo ; Nickel, Alexander ; Kohlhaas, Michael ; Gibson, Gary E. ; Heggermont, Ward ; Heymans, Stephane ; Maack, Christoph</creator><creatorcontrib>Wagner, Michael ; Bertero, Edoardo ; Nickel, Alexander ; Kohlhaas, Michael ; Gibson, Gary E. ; Heggermont, Ward ; Heymans, Stephane ; Maack, Christoph</creatorcontrib><description>In heart failure, a functional block of complex I of the respiratory chain provokes superoxide generation, which is transformed to H 2 O 2 by dismutation. The Krebs cycle produces NADH, which delivers electrons to complex I, and NADPH for H 2 O 2 elimination via isocitrate dehydrogenase and nicotinamide nucleotide transhydrogenase (NNT). At high NADH levels, α-ketoglutarate dehydrogenase (α-KGDH) is a major source of superoxide in skeletal muscle mitochondria with low NNT activity. Here, we analyzed how α-KGDH and NNT control H 2 O 2 emission in cardiac mitochondria. In cardiac mitochondria from NNT-competent BL/6N mice, H 2 O 2 emission is equally low with pyruvate/malate (P/M) or α-ketoglutarate (α-KG) as substrates. Complex I inhibition with rotenone increases H 2 O 2 emission from P/M, but not α-KG respiring mitochondria, which is potentiated by depleting H 2 O 2 -eliminating capacity. Conversely, in NNT-deficient BL/6J mitochondria, H 2 O 2 emission is higher with α-KG than with P/M as substrate, and further potentiated by complex I blockade. Prior depletion of H 2 O 2 -eliminating capacity increases H 2 O 2 emission from P/M, but not α-KG respiring mitochondria. In cardiac myocytes, downregulation of α-KGDH activity impaired dynamic mitochondrial redox adaptation during workload transitions, without increasing H 2 O 2 emission. In conclusion, NADH from α-KGDH selectively shuttles to NNT for NADPH formation rather than to complex I of the respiratory chain for ATP production. Therefore, α-KGDH plays a key role for H 2 O 2 elimination, but is not a relevant source of superoxide in heart. In heart failure, α-KGDH/NNT-dependent NADPH formation ameliorates oxidative stress imposed by complex I blockade. Downregulation of α-KGDH may, therefore, predispose to oxidative stress in heart failure.</description><identifier>ISSN: 0300-8428</identifier><identifier>ISSN: 1435-1803</identifier><identifier>EISSN: 1435-1803</identifier><identifier>DOI: 10.1007/s00395-020-0815-1</identifier><identifier>PMID: 32748289</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adenosine triphosphate ; Animals ; Cardiology ; Cardiomyocytes ; Cell Respiration ; Chains ; Congestive heart failure ; Dehydrogenase ; Dehydrogenases ; Depletion ; Electron transport chain ; Emission analysis ; Emissions control ; Heart failure ; Hydrogen peroxide ; Isocitrate dehydrogenase ; Ketoglutarate Dehydrogenase Complex - metabolism ; Ketoglutaric acid ; Krebs cycle ; Malate ; Medicine ; Medicine &amp; Public Health ; Mice, Inbred C57BL ; Mitochondria ; Mitochondria, Heart - metabolism ; Muscles ; Myocytes ; Myocytes, Cardiac - metabolism ; NAD - metabolism ; NADH ; NADP Transhydrogenases - metabolism ; NADPH ; Nicotinamide ; Nicotinamide adenine dinucleotide ; Nucleotides ; Original Contribution ; Oxidative stress ; Oxoglutarate dehydrogenase (lipoamide) ; Pyruvic acid ; Reactive oxygen species ; Reactive Oxygen Species - metabolism ; Rotenone ; Single-Cell Analysis ; Skeletal muscle ; Substrate inhibition ; Substrates ; Superoxide ; Tricarboxylic acid cycle</subject><ispartof>Basic research in cardiology, 2020-09, Vol.115 (5), p.53, Article 53</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-301970f3be351db9641597a8c857c2cf52fd08eabfaa0425a078487251b0be233</citedby><cites>FETCH-LOGICAL-c470t-301970f3be351db9641597a8c857c2cf52fd08eabfaa0425a078487251b0be233</cites><orcidid>0000-0003-3694-4559</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32748289$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wagner, Michael</creatorcontrib><creatorcontrib>Bertero, Edoardo</creatorcontrib><creatorcontrib>Nickel, Alexander</creatorcontrib><creatorcontrib>Kohlhaas, Michael</creatorcontrib><creatorcontrib>Gibson, Gary E.</creatorcontrib><creatorcontrib>Heggermont, Ward</creatorcontrib><creatorcontrib>Heymans, Stephane</creatorcontrib><creatorcontrib>Maack, Christoph</creatorcontrib><title>Selective NADH communication from α-ketoglutarate dehydrogenase to mitochondrial transhydrogenase prevents reactive oxygen species formation under reducing conditions in the heart</title><title>Basic research in cardiology</title><addtitle>Basic Res Cardiol</addtitle><addtitle>Basic Res Cardiol</addtitle><description>In heart failure, a functional block of complex I of the respiratory chain provokes superoxide generation, which is transformed to H 2 O 2 by dismutation. The Krebs cycle produces NADH, which delivers electrons to complex I, and NADPH for H 2 O 2 elimination via isocitrate dehydrogenase and nicotinamide nucleotide transhydrogenase (NNT). At high NADH levels, α-ketoglutarate dehydrogenase (α-KGDH) is a major source of superoxide in skeletal muscle mitochondria with low NNT activity. Here, we analyzed how α-KGDH and NNT control H 2 O 2 emission in cardiac mitochondria. In cardiac mitochondria from NNT-competent BL/6N mice, H 2 O 2 emission is equally low with pyruvate/malate (P/M) or α-ketoglutarate (α-KG) as substrates. Complex I inhibition with rotenone increases H 2 O 2 emission from P/M, but not α-KG respiring mitochondria, which is potentiated by depleting H 2 O 2 -eliminating capacity. Conversely, in NNT-deficient BL/6J mitochondria, H 2 O 2 emission is higher with α-KG than with P/M as substrate, and further potentiated by complex I blockade. Prior depletion of H 2 O 2 -eliminating capacity increases H 2 O 2 emission from P/M, but not α-KG respiring mitochondria. In cardiac myocytes, downregulation of α-KGDH activity impaired dynamic mitochondrial redox adaptation during workload transitions, without increasing H 2 O 2 emission. In conclusion, NADH from α-KGDH selectively shuttles to NNT for NADPH formation rather than to complex I of the respiratory chain for ATP production. Therefore, α-KGDH plays a key role for H 2 O 2 elimination, but is not a relevant source of superoxide in heart. In heart failure, α-KGDH/NNT-dependent NADPH formation ameliorates oxidative stress imposed by complex I blockade. Downregulation of α-KGDH may, therefore, predispose to oxidative stress in heart failure.</description><subject>Adenosine triphosphate</subject><subject>Animals</subject><subject>Cardiology</subject><subject>Cardiomyocytes</subject><subject>Cell Respiration</subject><subject>Chains</subject><subject>Congestive heart failure</subject><subject>Dehydrogenase</subject><subject>Dehydrogenases</subject><subject>Depletion</subject><subject>Electron transport chain</subject><subject>Emission analysis</subject><subject>Emissions control</subject><subject>Heart failure</subject><subject>Hydrogen peroxide</subject><subject>Isocitrate dehydrogenase</subject><subject>Ketoglutarate Dehydrogenase Complex - metabolism</subject><subject>Ketoglutaric acid</subject><subject>Krebs cycle</subject><subject>Malate</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Mice, Inbred C57BL</subject><subject>Mitochondria</subject><subject>Mitochondria, Heart - metabolism</subject><subject>Muscles</subject><subject>Myocytes</subject><subject>Myocytes, Cardiac - metabolism</subject><subject>NAD - metabolism</subject><subject>NADH</subject><subject>NADP Transhydrogenases - metabolism</subject><subject>NADPH</subject><subject>Nicotinamide</subject><subject>Nicotinamide adenine dinucleotide</subject><subject>Nucleotides</subject><subject>Original Contribution</subject><subject>Oxidative stress</subject><subject>Oxoglutarate dehydrogenase (lipoamide)</subject><subject>Pyruvic acid</subject><subject>Reactive oxygen species</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Rotenone</subject><subject>Single-Cell Analysis</subject><subject>Skeletal muscle</subject><subject>Substrate inhibition</subject><subject>Substrates</subject><subject>Superoxide</subject><subject>Tricarboxylic acid cycle</subject><issn>0300-8428</issn><issn>1435-1803</issn><issn>1435-1803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1ks2KFDEUhQtRnHb0AdxIwI2b0puf6ko2wjD-jDDoQl2HVOpWd8aqpE1Sjf1Ygs_hM5mmxnEUXCVwvnvuPXCq6jGF5xSgfZEAuGpqYFCDpE1N71QrKnj5SOB3qxVwgFoKJk-qByldAVCxXtP71QlnrZBMqlX14yOOaLPbI3l_9uqC2DBNs3fWZBc8GWKYyM_v9RfMYTPO2USTkfS4PfQxbNCbhCQHMrkc7Db4PjozkhyNT7eJXcQ9-pxIRLOsCt8ORSNph9ZhIkOI07Jw9j3GwvWzdX5TrvG9OwqJOE_yFskWTcwPq3uDGRM-un5Pq89vXn86v6gvP7x9d352WVvRQq45UNXCwDvkDe07tRa0Ua2RVjatZXZo2NCDRNMNxoBgjYFWCtmyhnbQIeP8tHq5-O7mbsLelhDRjHoX3WTiQQfj9N-Kd1u9CXvdcqXWsikGz64NYvg6Y8p6csniOBqPYU6aCQ68VVwc0af_oFdhjr7EKxRTilElVKHoQtkYUoo43BxDQR87oZdO6NIJfeyEpmXmye0UNxO_S1AAtgCpSH6D8c_q_7v-ArN6yLM</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Wagner, Michael</creator><creator>Bertero, Edoardo</creator><creator>Nickel, Alexander</creator><creator>Kohlhaas, Michael</creator><creator>Gibson, Gary E.</creator><creator>Heggermont, Ward</creator><creator>Heymans, Stephane</creator><creator>Maack, Christoph</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M7Z</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3694-4559</orcidid></search><sort><creationdate>20200901</creationdate><title>Selective NADH communication from α-ketoglutarate dehydrogenase to mitochondrial transhydrogenase prevents reactive oxygen species formation under reducing conditions in the heart</title><author>Wagner, Michael ; Bertero, Edoardo ; Nickel, Alexander ; Kohlhaas, Michael ; Gibson, Gary E. ; Heggermont, Ward ; Heymans, Stephane ; Maack, Christoph</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-301970f3be351db9641597a8c857c2cf52fd08eabfaa0425a078487251b0be233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adenosine triphosphate</topic><topic>Animals</topic><topic>Cardiology</topic><topic>Cardiomyocytes</topic><topic>Cell Respiration</topic><topic>Chains</topic><topic>Congestive heart failure</topic><topic>Dehydrogenase</topic><topic>Dehydrogenases</topic><topic>Depletion</topic><topic>Electron transport chain</topic><topic>Emission analysis</topic><topic>Emissions control</topic><topic>Heart failure</topic><topic>Hydrogen peroxide</topic><topic>Isocitrate dehydrogenase</topic><topic>Ketoglutarate Dehydrogenase Complex - metabolism</topic><topic>Ketoglutaric acid</topic><topic>Krebs cycle</topic><topic>Malate</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Mice, Inbred C57BL</topic><topic>Mitochondria</topic><topic>Mitochondria, Heart - metabolism</topic><topic>Muscles</topic><topic>Myocytes</topic><topic>Myocytes, Cardiac - metabolism</topic><topic>NAD - metabolism</topic><topic>NADH</topic><topic>NADP Transhydrogenases - metabolism</topic><topic>NADPH</topic><topic>Nicotinamide</topic><topic>Nicotinamide adenine dinucleotide</topic><topic>Nucleotides</topic><topic>Original Contribution</topic><topic>Oxidative stress</topic><topic>Oxoglutarate dehydrogenase (lipoamide)</topic><topic>Pyruvic acid</topic><topic>Reactive oxygen species</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Rotenone</topic><topic>Single-Cell Analysis</topic><topic>Skeletal muscle</topic><topic>Substrate inhibition</topic><topic>Substrates</topic><topic>Superoxide</topic><topic>Tricarboxylic acid cycle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wagner, Michael</creatorcontrib><creatorcontrib>Bertero, Edoardo</creatorcontrib><creatorcontrib>Nickel, Alexander</creatorcontrib><creatorcontrib>Kohlhaas, Michael</creatorcontrib><creatorcontrib>Gibson, Gary E.</creatorcontrib><creatorcontrib>Heggermont, Ward</creatorcontrib><creatorcontrib>Heymans, Stephane</creatorcontrib><creatorcontrib>Maack, Christoph</creatorcontrib><collection>Springer Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Basic research in cardiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wagner, Michael</au><au>Bertero, Edoardo</au><au>Nickel, Alexander</au><au>Kohlhaas, Michael</au><au>Gibson, Gary E.</au><au>Heggermont, Ward</au><au>Heymans, Stephane</au><au>Maack, Christoph</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selective NADH communication from α-ketoglutarate dehydrogenase to mitochondrial transhydrogenase prevents reactive oxygen species formation under reducing conditions in the heart</atitle><jtitle>Basic research in cardiology</jtitle><stitle>Basic Res Cardiol</stitle><addtitle>Basic Res Cardiol</addtitle><date>2020-09-01</date><risdate>2020</risdate><volume>115</volume><issue>5</issue><spage>53</spage><pages>53-</pages><artnum>53</artnum><issn>0300-8428</issn><issn>1435-1803</issn><eissn>1435-1803</eissn><abstract>In heart failure, a functional block of complex I of the respiratory chain provokes superoxide generation, which is transformed to H 2 O 2 by dismutation. The Krebs cycle produces NADH, which delivers electrons to complex I, and NADPH for H 2 O 2 elimination via isocitrate dehydrogenase and nicotinamide nucleotide transhydrogenase (NNT). At high NADH levels, α-ketoglutarate dehydrogenase (α-KGDH) is a major source of superoxide in skeletal muscle mitochondria with low NNT activity. Here, we analyzed how α-KGDH and NNT control H 2 O 2 emission in cardiac mitochondria. In cardiac mitochondria from NNT-competent BL/6N mice, H 2 O 2 emission is equally low with pyruvate/malate (P/M) or α-ketoglutarate (α-KG) as substrates. Complex I inhibition with rotenone increases H 2 O 2 emission from P/M, but not α-KG respiring mitochondria, which is potentiated by depleting H 2 O 2 -eliminating capacity. Conversely, in NNT-deficient BL/6J mitochondria, H 2 O 2 emission is higher with α-KG than with P/M as substrate, and further potentiated by complex I blockade. Prior depletion of H 2 O 2 -eliminating capacity increases H 2 O 2 emission from P/M, but not α-KG respiring mitochondria. In cardiac myocytes, downregulation of α-KGDH activity impaired dynamic mitochondrial redox adaptation during workload transitions, without increasing H 2 O 2 emission. In conclusion, NADH from α-KGDH selectively shuttles to NNT for NADPH formation rather than to complex I of the respiratory chain for ATP production. Therefore, α-KGDH plays a key role for H 2 O 2 elimination, but is not a relevant source of superoxide in heart. In heart failure, α-KGDH/NNT-dependent NADPH formation ameliorates oxidative stress imposed by complex I blockade. Downregulation of α-KGDH may, therefore, predispose to oxidative stress in heart failure.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>32748289</pmid><doi>10.1007/s00395-020-0815-1</doi><orcidid>https://orcid.org/0000-0003-3694-4559</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0300-8428
ispartof Basic research in cardiology, 2020-09, Vol.115 (5), p.53, Article 53
issn 0300-8428
1435-1803
1435-1803
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7399685
source Springer Nature
subjects Adenosine triphosphate
Animals
Cardiology
Cardiomyocytes
Cell Respiration
Chains
Congestive heart failure
Dehydrogenase
Dehydrogenases
Depletion
Electron transport chain
Emission analysis
Emissions control
Heart failure
Hydrogen peroxide
Isocitrate dehydrogenase
Ketoglutarate Dehydrogenase Complex - metabolism
Ketoglutaric acid
Krebs cycle
Malate
Medicine
Medicine & Public Health
Mice, Inbred C57BL
Mitochondria
Mitochondria, Heart - metabolism
Muscles
Myocytes
Myocytes, Cardiac - metabolism
NAD - metabolism
NADH
NADP Transhydrogenases - metabolism
NADPH
Nicotinamide
Nicotinamide adenine dinucleotide
Nucleotides
Original Contribution
Oxidative stress
Oxoglutarate dehydrogenase (lipoamide)
Pyruvic acid
Reactive oxygen species
Reactive Oxygen Species - metabolism
Rotenone
Single-Cell Analysis
Skeletal muscle
Substrate inhibition
Substrates
Superoxide
Tricarboxylic acid cycle
title Selective NADH communication from α-ketoglutarate dehydrogenase to mitochondrial transhydrogenase prevents reactive oxygen species formation under reducing conditions in the heart
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T22%3A10%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selective%20NADH%20communication%20from%20%CE%B1-ketoglutarate%20dehydrogenase%20to%20mitochondrial%20transhydrogenase%20prevents%20reactive%20oxygen%20species%20formation%20under%20reducing%20conditions%20in%20the%20heart&rft.jtitle=Basic%20research%20in%20cardiology&rft.au=Wagner,%20Michael&rft.date=2020-09-01&rft.volume=115&rft.issue=5&rft.spage=53&rft.pages=53-&rft.artnum=53&rft.issn=0300-8428&rft.eissn=1435-1803&rft_id=info:doi/10.1007/s00395-020-0815-1&rft_dat=%3Cproquest_pubme%3E2430379345%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c470t-301970f3be351db9641597a8c857c2cf52fd08eabfaa0425a078487251b0be233%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2429921949&rft_id=info:pmid/32748289&rfr_iscdi=true