Loading…

Post-diaminobenzidine Treatments for Double Stainings: Extension of Sulfide-Silver-Gold Intensification for Light and Fluorescent Microscopy

Double staining protocols using the most popular immunoperoxidase techniques may raise difficulties. The two ordinary detection systems may cross-talk, when the primary antibodies are derived from phylogenetically closely related animals. A color shift of the 3,3′-diaminobenzidine (DAB) polymer may...

Full description

Saved in:
Bibliographic Details
Published in:The journal of histochemistry and cytochemistry 2020-08, Vol.68 (8), p.571-582
Main Authors: Török, Ibolya, Seprényi, György, Pór, Erzsébet, Borbély, Emőke, Szögi, Titanilla, Dobó, Endre
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Double staining protocols using the most popular immunoperoxidase techniques may raise difficulties. The two ordinary detection systems may cross-talk, when the primary antibodies are derived from phylogenetically closely related animals. A color shift of the 3,3′-diaminobenzidine (DAB) polymer may occur during the second development, resulting in poor distinction between the two kinds of deposits. A post-DAB technique, sulfide-silver-gold intensification, was fine tuned to eliminate these difficulties, which may be especially suitable for colocalization of cell nuclei and perikarya of the same cells. The revised method was probed in combination with a subsequent other immunoperoxidase step or fluorochrome-tagged reagents. The nuclear antigens (BrdU, c-Fos, and Prox-1) were first visualized with DAB polymer, which were then treated with SSGI, turning the deposit black. Thereafter, cytoplasmic antigens (doublecortin, neuronal nuclei, and calbindin) were detected with either another immunoperoxidase using DAB again or immunofluorescence labeling. In both approaches, the immunopositive nuclei and cytoplasmic sites could be easily distinguished even at low magnifications. Different shielding or eluting posttreatments were compared for consecutive acetylcholinesterase histochemistry terminated with DAB development and immunohistochemistry in the same sections. In conclusion, we recommend post-DAB treatments that abolish interactions between detection systems and allow clear distinction between the two signals under various conditions:
ISSN:0022-1554
1551-5044
DOI:10.1369/0022155420942213