Loading…
hsa‑microRNA‑411‑5p regulates proliferation, migration and invasion by targeting the hyaluronan mediated motility receptor in ovarian cancer
The mortality rate of ovarian cancer is the highest out of all gynecological malignancies worldwide. Therefore, it is important to understand the mechanisms of ovarian cancer, identify new biomarkers and develop targeted drugs. The role and molecular mechanisms of hsa-microRNA (miR)-411-5p in ovaria...
Saved in:
Published in: | Experimental and therapeutic medicine 2020-09, Vol.20 (3), p.1899-1906 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The mortality rate of ovarian cancer is the highest out of all gynecological malignancies worldwide. Therefore, it is important to understand the mechanisms of ovarian cancer, identify new biomarkers and develop targeted drugs. The role and molecular mechanisms of hsa-microRNA (miR)-411-5p in ovarian cancer have not been fully elucidated. The present study investigated the ovarian cancer cell lines OVCAR-8 and SKOV3. After transfection with miRNA mimics, cell proliferation was monitored by a proliferation assay. Furthermore, cell migration was measured by a cell wound healing assay and cell invasion was measured by Matrigel invasion assays. A miRNA luciferase reporter assay was used to analyze the relationship between miRNAs and the target gene HMMR, which was then further evaluated by gene differential analysis. In the current study, hsa-mir-411-5p was identified as a miRNA regulator of the hyaluronan mediated motility receptor, which negatively regulated the activity of ERK1/2 and ultimately inhibited ovarian cancer cell proliferation and motility. Although hsa-mir-411-5p may have different roles in other types of cancer, the present study suggested that miR-411-5p functions as a negative tumor regulator in ovarian cancer cells, displaying the potential of miR-411-5p as a biomarker for ovarian cancer. |
---|---|
ISSN: | 1792-0981 1792-1015 |
DOI: | 10.3892/etm.2020.8899 |