Loading…

Inhibition of miR-96 enhances the sensitivity of colorectal cancer cells to oxaliplatin by targeting TPM1

Colorectal cancer (CRC) is one of the major threats to human health worldwide. In the treatment of CRC, chemoresistance affects the efficacy of platinum-based therapies. Oxaliplatin is one of the most commonly used first-line medications for the treatment of CRC; however, chemoresistance is common a...

Full description

Saved in:
Bibliographic Details
Published in:Experimental and therapeutic medicine 2020-09, Vol.20 (3), p.2134-2140
Main Authors: Ge, Tingrui, Xiang, Ping, Mao, Haibing, Tang, Shumin, Zhou, Jinyi, Zhang, Yonggang
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Colorectal cancer (CRC) is one of the major threats to human health worldwide. In the treatment of CRC, chemoresistance affects the efficacy of platinum-based therapies. Oxaliplatin is one of the most commonly used first-line medications for the treatment of CRC; however, chemoresistance is common among patients receiving oxaliplatin treatment, which significantly decreases its therapeutic efficacy. The present study focused on the roles of microRNA (miR)-96 in the oxaliplatin resistance of CRC cells and the underlying mechanisms. First, the expression of miR-96 was compared between CRC and adjacent tissues. Furthermore, target genes of miR-96 were predicted, and a dual-luciferase reporter assay was employed to confirm whether the candidate tropomyosin 1 (TPM1) is a direct target of miR-96. In addition, CRC cells were transfected with miR-96 inhibitor, miR-negative control, small interfering RNA (siRNA) targeting TPM1 or siRNA NC, and then treated with oxaliplatin. CCK-8 assay and flow cytometry were performed to examine the proliferation and apoptosis of the CRC cell line SW480. Next, reverse transcription-quantitative PCR and western blot analysis were performed to determine the mRNA and/or protein levels of miR-96, Bcl-2, BAX and TPM1. The results indicated that miR-96 was upregulated in CRC compared with normal adjacent tissues, while TPM1 was downregulated. The luciferase activity was reduced following transfection with miR-96 mimics and luciferase reporter plasmid containing the wild-type sequence of the 3'-untranslated region of TPM1. Furthermore, knockdown of miR-96 combined with oxaliplatin reduced the viability and induced apoptosis of CRC cells, which was further verified by decreased expression of Bcl-2 and the increased expression of TPM1 and BAX. Taken together, the downregulation of miR-96 enhanced the sensitivity of CRC cells to oxaliplatin.
ISSN:1792-0981
1792-1015
DOI:10.3892/etm.2020.8936