Loading…

Characterization of Rough PTFE Surfaces by the Modified Wilhelmy Balance Technique

The wetting of rough polymer surfaces is of great importance for many technical applications. In this paper, we demonstrate the relationship between the mean roughness values and the fractal dimension of rough and self-affine PTFE surfaces. We have used white light interferometry measurements to obt...

Full description

Saved in:
Bibliographic Details
Published in:Polymers 2020-07, Vol.12 (7), p.1528
Main Authors: Karl, Christian W., Krauklis, Andrey E., Lang, Andrej, Giese, Ulrich
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The wetting of rough polymer surfaces is of great importance for many technical applications. In this paper, we demonstrate the relationship between the mean roughness values and the fractal dimension of rough and self-affine PTFE surfaces. We have used white light interferometry measurements to obtain information about the complex topography of the technical surfaces having different height distributions. Two different methods for the calculation of the fractal dimension were used: The height difference correlation function (HDC) and the cube counting method. It was demonstrated that the mean roughness value (Ra) correlates better with the fractal dimension Df determined by the cube counting method than with the Df values obtained from HDC calculations. However, the HDC values show a stronger dependency by changing the surface roughness. The advancing and receding contact angles as well as the contact angle hysteresis of PTFE samples of different roughness were studied by the modified Wilhelmy balance technique using deionized water as a liquid. The modified Wilhelmy balance technique enables the possibility for future analysis of very rough PTFE surfaces which are difficult to investigate with the sessile drop method.
ISSN:2073-4360
2073-4360
DOI:10.3390/polym12071528