Loading…

A comparison of the temporal and spatial properties of trans-saccadic perceptual recalibration and saccadic adaptation

Repeated exposure to a consistent trans-saccadic step in the position of the saccadic target reliably produces a change of saccadic gain, a well-established trans-saccadic motor learning phenomenon known as saccadic adaptation. Trans-saccadic changes can also produce perceptual effects. Specifically...

Full description

Saved in:
Bibliographic Details
Published in:Journal of vision (Charlottesville, Va.) Va.), 2020-04, Vol.20 (4), p.2-2
Main Authors: Valsecchi, Matteo, Cassanello, Carlos, Herwig, Arvid, Rolfs, Martin, Gegenfurtner, Karl R
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Repeated exposure to a consistent trans-saccadic step in the position of the saccadic target reliably produces a change of saccadic gain, a well-established trans-saccadic motor learning phenomenon known as saccadic adaptation. Trans-saccadic changes can also produce perceptual effects. Specifically, a systematic increase or decrease in the size of the object that is being foveated changes the perceptually equivalent size between fovea and periphery. Previous studies have shown that this recalibration of perceived size can be established within a few dozen trials, persists overnight, and generalizes across hemifields. In the current study, we use a novel adjustment paradigm to characterize both temporally and spatially the learning process that subtends this form of recalibration, and directly compare its properties to those of saccadic adaptation. We observed that sinusoidal oscillations in the amplitude of the trans-saccadic change produce sinusoidal oscillations in the reported peripheral size, with a lag of under 10 trials. This is qualitatively similar to what has been observed in the case of saccadic adaptation. We also tested whether learning is generalized to the mirror location on the opposite hemifield for both size recalibration and saccade adaptation. Here the results were markedly different, showing almost complete generalization for recalibration and no generalization for saccadic adaptation. We conclude that perceptual and visuomotor consequences of trans-saccadic changes rely on learning mechanisms that are distinct but develop on similar time scales.
ISSN:1534-7362
1534-7362
DOI:10.1167/jov.20.4.2