Loading…
Investigation of the Effect of End Mill-Geometry on Roughness and Surface Strain-Hardening of Aluminum Alloy AA6082
Micro-milling is a promising technology for micro-manufacturing of high-tech components. A deep understanding of the micro-milling process is necessary since a simple downscaling from conventional milling is impossible. In this study, the effect of the mill geometry and feed per tooth on roughness a...
Saved in:
Published in: | Materials 2020-07, Vol.13 (14), p.3078 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Micro-milling is a promising technology for micro-manufacturing of high-tech components. A deep understanding of the micro-milling process is necessary since a simple downscaling from conventional milling is impossible. In this study, the effect of the mill geometry and feed per tooth on roughness and indentation hardness of micro-machined AA6082 surfaces is analyzed. A solid carbide (SC) single-tooth end-mill (cutting edge radius 670 nm) is compared to a monocrystalline diamond (MD) end-mill (cutting edge radius 17 nm). Feed per tooth was varied by 3 μm, 8 μm and 14 μm. The machined surface roughness was analyzed microscopically, while surface strain-hardening was determined using an indentation procedure with multiple partial unload cycles. No significant feed per tooth influence on surface roughness or mechanical properties was observed within the chosen range. Tools’ cutting edge roughness is demonstrated to be the main factor influencing the surface roughness. The SC-tool machined surfaces had an average Rq = 119 nm, while the MD-tool machined surfaces reached Rq = 26 nm. Surface strain-hardening is influenced mainly by the cutting edge radius (size-effect). For surfaces produced with the SC-tool, depth of the strain-hardened zone is higher than 200 nm and the hardness increases up to 160% compared to bulk. MD-tool produced a thinner strain-hardened zone of max. 60 nm while the hardness increased up to 125% at the surface. These findings are especially important for the high-precision manufacturing of measurement technology modules for the terahertz range. |
---|---|
ISSN: | 1996-1944 1996-1944 |
DOI: | 10.3390/ma13143078 |