Loading…

Conserved Upstream Regulatory Regions in Mammalian Tyrosine Hydroxylase

Tyrosine hydroxylase ( Th ) encodes the rate-limiting enzyme in catecholamine biosynthesis, and the regulation of its transcription is critical for the specification and maintenance of catecholaminergic neuron phenotypes. For many genes, regulatory genomic DNA sequences that are upstream of the prox...

Full description

Saved in:
Bibliographic Details
Published in:Molecular neurobiology 2018-09, Vol.55 (9), p.7340-7351
Main Authors: Wang, Meng, Fones, Lilah, Cave, John W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c470t-96c8619fc4212d451ebeb35c8b208bbb5d34544fd150ff44f2d1bf7e2e9a37483
cites cdi_FETCH-LOGICAL-c470t-96c8619fc4212d451ebeb35c8b208bbb5d34544fd150ff44f2d1bf7e2e9a37483
container_end_page 7351
container_issue 9
container_start_page 7340
container_title Molecular neurobiology
container_volume 55
creator Wang, Meng
Fones, Lilah
Cave, John W.
description Tyrosine hydroxylase ( Th ) encodes the rate-limiting enzyme in catecholamine biosynthesis, and the regulation of its transcription is critical for the specification and maintenance of catecholaminergic neuron phenotypes. For many genes, regulatory genomic DNA sequences that are upstream of the proximal promoter control expression levels as well as region-specific expression patterns. The regulatory architecture of the genomic DNA upstream of the Th proximal promoter, however, is poorly understood. In this study, we examined the 11 kb upstream nucleotide sequence of Th from nine mammalian species and identified five highly conserved regions. Using cultured human cells and mouse olfactory bulb tissue, chromatin immunoprecipitation (ChIP) assays show that these conserved regions recruit transcription factors that are established regulators of Th transcription (such as NURR1, PITX3, FOXA2, MEIS2, and PAX6). This analysis also identified a conserved binding site for CTCF, and functional studies in cultured human cells and ChIP assays with mouse tissue show that CTCF is a novel regulator of Th transcription in the forebrain. Together, the findings in this study provide key insights into the upstream regulatory genomic architecture and regulatory mechanisms controlling mammalian Th gene transcription.
doi_str_mv 10.1007/s12035-018-0936-9
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7416498</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1994210646</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-96c8619fc4212d451ebeb35c8b208bbb5d34544fd150ff44f2d1bf7e2e9a37483</originalsourceid><addsrcrecordid>eNp1kUFr3DAQhUVpaTZJf0AvxdBLL25mZEm2LoWytEkhoRCSs5Dt8dbBlraSHeJ_X5lNQlroaQbmmzd6eoy9R_iMAOVZRA6FzAGrHHShcv2KbVBKnSNW_DXbQKWLvFSiOmLHMd4BcI5QvmVHXAsQWuoNO996FyncU5vd7uMUyI7ZNe3mwU4-LGvbJyDrXXZlx9EOvXXZzRJ87B1lF0sb_MMy2Ein7E1nh0jvHusJu_3-7WZ7kV_-PP-x_XqZN6KEKdeqqRTqrhEceSskUk11IZuq5lDVdS3bQkghuhYldF1qeIt1VxInbYtSVMUJ-3LQ3c_1SG1Dbgp2MPvQjzYsxtve_D1x_S-z8_emFKiEXgU-PQoE_3umOJmxjw0Ng3Xk52hQa4kKFKqEfvwHvfNzcMneSiUHoMRK4YFq0q_EQN3zYxDMGpM5xGRSTGaNyei08-Gli-eNp1wSwA9ATCO3o_Di9H9V_wBnZ552</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1994210646</pqid></control><display><type>article</type><title>Conserved Upstream Regulatory Regions in Mammalian Tyrosine Hydroxylase</title><source>Springer Nature</source><creator>Wang, Meng ; Fones, Lilah ; Cave, John W.</creator><creatorcontrib>Wang, Meng ; Fones, Lilah ; Cave, John W.</creatorcontrib><description>Tyrosine hydroxylase ( Th ) encodes the rate-limiting enzyme in catecholamine biosynthesis, and the regulation of its transcription is critical for the specification and maintenance of catecholaminergic neuron phenotypes. For many genes, regulatory genomic DNA sequences that are upstream of the proximal promoter control expression levels as well as region-specific expression patterns. The regulatory architecture of the genomic DNA upstream of the Th proximal promoter, however, is poorly understood. In this study, we examined the 11 kb upstream nucleotide sequence of Th from nine mammalian species and identified five highly conserved regions. Using cultured human cells and mouse olfactory bulb tissue, chromatin immunoprecipitation (ChIP) assays show that these conserved regions recruit transcription factors that are established regulators of Th transcription (such as NURR1, PITX3, FOXA2, MEIS2, and PAX6). This analysis also identified a conserved binding site for CTCF, and functional studies in cultured human cells and ChIP assays with mouse tissue show that CTCF is a novel regulator of Th transcription in the forebrain. Together, the findings in this study provide key insights into the upstream regulatory genomic architecture and regulatory mechanisms controlling mammalian Th gene transcription.</description><identifier>ISSN: 0893-7648</identifier><identifier>EISSN: 1559-1182</identifier><identifier>DOI: 10.1007/s12035-018-0936-9</identifier><identifier>PMID: 29404959</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Animals ; Base Pairing - genetics ; Base Sequence ; Binding Sites ; Biomedical and Life Sciences ; Biomedicine ; Biosynthesis ; Catecholamines ; CCCTC-Binding Factor - metabolism ; Cell Biology ; Chromatin ; Conserved sequence ; Conserved Sequence - genetics ; Deoxyribonucleic acid ; DNA ; Forebrain ; Gene regulation ; Genome ; Humans ; Hydroxylase ; Immunoprecipitation ; Mammals ; Mammals - genetics ; Mice ; Neurobiology ; Neurology ; Neurosciences ; Nuclear receptors ; Nucleotide sequence ; Nurr1 protein ; Olfactory bulb ; Organ Specificity - genetics ; Pax6 protein ; Regulatory sequences ; Regulatory Sequences, Nucleic Acid - genetics ; Rodents ; Sequence Alignment ; Transcription factors ; Transcription Factors - metabolism ; Transcription, Genetic ; Tyrosine 3-monooxygenase ; Tyrosine 3-Monooxygenase - genetics</subject><ispartof>Molecular neurobiology, 2018-09, Vol.55 (9), p.7340-7351</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Molecular Neurobiology is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-96c8619fc4212d451ebeb35c8b208bbb5d34544fd150ff44f2d1bf7e2e9a37483</citedby><cites>FETCH-LOGICAL-c470t-96c8619fc4212d451ebeb35c8b208bbb5d34544fd150ff44f2d1bf7e2e9a37483</cites><orcidid>0000-0003-1792-7219</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29404959$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Meng</creatorcontrib><creatorcontrib>Fones, Lilah</creatorcontrib><creatorcontrib>Cave, John W.</creatorcontrib><title>Conserved Upstream Regulatory Regions in Mammalian Tyrosine Hydroxylase</title><title>Molecular neurobiology</title><addtitle>Mol Neurobiol</addtitle><addtitle>Mol Neurobiol</addtitle><description>Tyrosine hydroxylase ( Th ) encodes the rate-limiting enzyme in catecholamine biosynthesis, and the regulation of its transcription is critical for the specification and maintenance of catecholaminergic neuron phenotypes. For many genes, regulatory genomic DNA sequences that are upstream of the proximal promoter control expression levels as well as region-specific expression patterns. The regulatory architecture of the genomic DNA upstream of the Th proximal promoter, however, is poorly understood. In this study, we examined the 11 kb upstream nucleotide sequence of Th from nine mammalian species and identified five highly conserved regions. Using cultured human cells and mouse olfactory bulb tissue, chromatin immunoprecipitation (ChIP) assays show that these conserved regions recruit transcription factors that are established regulators of Th transcription (such as NURR1, PITX3, FOXA2, MEIS2, and PAX6). This analysis also identified a conserved binding site for CTCF, and functional studies in cultured human cells and ChIP assays with mouse tissue show that CTCF is a novel regulator of Th transcription in the forebrain. Together, the findings in this study provide key insights into the upstream regulatory genomic architecture and regulatory mechanisms controlling mammalian Th gene transcription.</description><subject>Animals</subject><subject>Base Pairing - genetics</subject><subject>Base Sequence</subject><subject>Binding Sites</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Biosynthesis</subject><subject>Catecholamines</subject><subject>CCCTC-Binding Factor - metabolism</subject><subject>Cell Biology</subject><subject>Chromatin</subject><subject>Conserved sequence</subject><subject>Conserved Sequence - genetics</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Forebrain</subject><subject>Gene regulation</subject><subject>Genome</subject><subject>Humans</subject><subject>Hydroxylase</subject><subject>Immunoprecipitation</subject><subject>Mammals</subject><subject>Mammals - genetics</subject><subject>Mice</subject><subject>Neurobiology</subject><subject>Neurology</subject><subject>Neurosciences</subject><subject>Nuclear receptors</subject><subject>Nucleotide sequence</subject><subject>Nurr1 protein</subject><subject>Olfactory bulb</subject><subject>Organ Specificity - genetics</subject><subject>Pax6 protein</subject><subject>Regulatory sequences</subject><subject>Regulatory Sequences, Nucleic Acid - genetics</subject><subject>Rodents</subject><subject>Sequence Alignment</subject><subject>Transcription factors</subject><subject>Transcription Factors - metabolism</subject><subject>Transcription, Genetic</subject><subject>Tyrosine 3-monooxygenase</subject><subject>Tyrosine 3-Monooxygenase - genetics</subject><issn>0893-7648</issn><issn>1559-1182</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kUFr3DAQhUVpaTZJf0AvxdBLL25mZEm2LoWytEkhoRCSs5Dt8dbBlraSHeJ_X5lNQlroaQbmmzd6eoy9R_iMAOVZRA6FzAGrHHShcv2KbVBKnSNW_DXbQKWLvFSiOmLHMd4BcI5QvmVHXAsQWuoNO996FyncU5vd7uMUyI7ZNe3mwU4-LGvbJyDrXXZlx9EOvXXZzRJ87B1lF0sb_MMy2Ein7E1nh0jvHusJu_3-7WZ7kV_-PP-x_XqZN6KEKdeqqRTqrhEceSskUk11IZuq5lDVdS3bQkghuhYldF1qeIt1VxInbYtSVMUJ-3LQ3c_1SG1Dbgp2MPvQjzYsxtve_D1x_S-z8_emFKiEXgU-PQoE_3umOJmxjw0Ng3Xk52hQa4kKFKqEfvwHvfNzcMneSiUHoMRK4YFq0q_EQN3zYxDMGpM5xGRSTGaNyei08-Gli-eNp1wSwA9ATCO3o_Di9H9V_wBnZ552</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Wang, Meng</creator><creator>Fones, Lilah</creator><creator>Cave, John W.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1792-7219</orcidid></search><sort><creationdate>20180901</creationdate><title>Conserved Upstream Regulatory Regions in Mammalian Tyrosine Hydroxylase</title><author>Wang, Meng ; Fones, Lilah ; Cave, John W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-96c8619fc4212d451ebeb35c8b208bbb5d34544fd150ff44f2d1bf7e2e9a37483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Base Pairing - genetics</topic><topic>Base Sequence</topic><topic>Binding Sites</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Biosynthesis</topic><topic>Catecholamines</topic><topic>CCCTC-Binding Factor - metabolism</topic><topic>Cell Biology</topic><topic>Chromatin</topic><topic>Conserved sequence</topic><topic>Conserved Sequence - genetics</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Forebrain</topic><topic>Gene regulation</topic><topic>Genome</topic><topic>Humans</topic><topic>Hydroxylase</topic><topic>Immunoprecipitation</topic><topic>Mammals</topic><topic>Mammals - genetics</topic><topic>Mice</topic><topic>Neurobiology</topic><topic>Neurology</topic><topic>Neurosciences</topic><topic>Nuclear receptors</topic><topic>Nucleotide sequence</topic><topic>Nurr1 protein</topic><topic>Olfactory bulb</topic><topic>Organ Specificity - genetics</topic><topic>Pax6 protein</topic><topic>Regulatory sequences</topic><topic>Regulatory Sequences, Nucleic Acid - genetics</topic><topic>Rodents</topic><topic>Sequence Alignment</topic><topic>Transcription factors</topic><topic>Transcription Factors - metabolism</topic><topic>Transcription, Genetic</topic><topic>Tyrosine 3-monooxygenase</topic><topic>Tyrosine 3-Monooxygenase - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Meng</creatorcontrib><creatorcontrib>Fones, Lilah</creatorcontrib><creatorcontrib>Cave, John W.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Science Database (ProQuest)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular neurobiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Meng</au><au>Fones, Lilah</au><au>Cave, John W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conserved Upstream Regulatory Regions in Mammalian Tyrosine Hydroxylase</atitle><jtitle>Molecular neurobiology</jtitle><stitle>Mol Neurobiol</stitle><addtitle>Mol Neurobiol</addtitle><date>2018-09-01</date><risdate>2018</risdate><volume>55</volume><issue>9</issue><spage>7340</spage><epage>7351</epage><pages>7340-7351</pages><issn>0893-7648</issn><eissn>1559-1182</eissn><abstract>Tyrosine hydroxylase ( Th ) encodes the rate-limiting enzyme in catecholamine biosynthesis, and the regulation of its transcription is critical for the specification and maintenance of catecholaminergic neuron phenotypes. For many genes, regulatory genomic DNA sequences that are upstream of the proximal promoter control expression levels as well as region-specific expression patterns. The regulatory architecture of the genomic DNA upstream of the Th proximal promoter, however, is poorly understood. In this study, we examined the 11 kb upstream nucleotide sequence of Th from nine mammalian species and identified five highly conserved regions. Using cultured human cells and mouse olfactory bulb tissue, chromatin immunoprecipitation (ChIP) assays show that these conserved regions recruit transcription factors that are established regulators of Th transcription (such as NURR1, PITX3, FOXA2, MEIS2, and PAX6). This analysis also identified a conserved binding site for CTCF, and functional studies in cultured human cells and ChIP assays with mouse tissue show that CTCF is a novel regulator of Th transcription in the forebrain. Together, the findings in this study provide key insights into the upstream regulatory genomic architecture and regulatory mechanisms controlling mammalian Th gene transcription.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>29404959</pmid><doi>10.1007/s12035-018-0936-9</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-1792-7219</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0893-7648
ispartof Molecular neurobiology, 2018-09, Vol.55 (9), p.7340-7351
issn 0893-7648
1559-1182
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7416498
source Springer Nature
subjects Animals
Base Pairing - genetics
Base Sequence
Binding Sites
Biomedical and Life Sciences
Biomedicine
Biosynthesis
Catecholamines
CCCTC-Binding Factor - metabolism
Cell Biology
Chromatin
Conserved sequence
Conserved Sequence - genetics
Deoxyribonucleic acid
DNA
Forebrain
Gene regulation
Genome
Humans
Hydroxylase
Immunoprecipitation
Mammals
Mammals - genetics
Mice
Neurobiology
Neurology
Neurosciences
Nuclear receptors
Nucleotide sequence
Nurr1 protein
Olfactory bulb
Organ Specificity - genetics
Pax6 protein
Regulatory sequences
Regulatory Sequences, Nucleic Acid - genetics
Rodents
Sequence Alignment
Transcription factors
Transcription Factors - metabolism
Transcription, Genetic
Tyrosine 3-monooxygenase
Tyrosine 3-Monooxygenase - genetics
title Conserved Upstream Regulatory Regions in Mammalian Tyrosine Hydroxylase
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T02%3A12%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conserved%20Upstream%20Regulatory%20Regions%20in%20Mammalian%20Tyrosine%20Hydroxylase&rft.jtitle=Molecular%20neurobiology&rft.au=Wang,%20Meng&rft.date=2018-09-01&rft.volume=55&rft.issue=9&rft.spage=7340&rft.epage=7351&rft.pages=7340-7351&rft.issn=0893-7648&rft.eissn=1559-1182&rft_id=info:doi/10.1007/s12035-018-0936-9&rft_dat=%3Cproquest_pubme%3E1994210646%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c470t-96c8619fc4212d451ebeb35c8b208bbb5d34544fd150ff44f2d1bf7e2e9a37483%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1994210646&rft_id=info:pmid/29404959&rfr_iscdi=true