Loading…
Conserved Upstream Regulatory Regions in Mammalian Tyrosine Hydroxylase
Tyrosine hydroxylase ( Th ) encodes the rate-limiting enzyme in catecholamine biosynthesis, and the regulation of its transcription is critical for the specification and maintenance of catecholaminergic neuron phenotypes. For many genes, regulatory genomic DNA sequences that are upstream of the prox...
Saved in:
Published in: | Molecular neurobiology 2018-09, Vol.55 (9), p.7340-7351 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c470t-96c8619fc4212d451ebeb35c8b208bbb5d34544fd150ff44f2d1bf7e2e9a37483 |
---|---|
cites | cdi_FETCH-LOGICAL-c470t-96c8619fc4212d451ebeb35c8b208bbb5d34544fd150ff44f2d1bf7e2e9a37483 |
container_end_page | 7351 |
container_issue | 9 |
container_start_page | 7340 |
container_title | Molecular neurobiology |
container_volume | 55 |
creator | Wang, Meng Fones, Lilah Cave, John W. |
description | Tyrosine hydroxylase
(
Th
) encodes the rate-limiting enzyme in catecholamine biosynthesis, and the regulation of its transcription is critical for the specification and maintenance of catecholaminergic neuron phenotypes. For many genes, regulatory genomic DNA sequences that are upstream of the proximal promoter control expression levels as well as region-specific expression patterns. The regulatory architecture of the genomic DNA upstream of the
Th
proximal promoter, however, is poorly understood. In this study, we examined the 11 kb upstream nucleotide sequence of
Th
from nine mammalian species and identified five highly conserved regions. Using cultured human cells and mouse olfactory bulb tissue, chromatin immunoprecipitation (ChIP) assays show that these conserved regions recruit transcription factors that are established regulators of
Th
transcription (such as NURR1, PITX3, FOXA2, MEIS2, and PAX6). This analysis also identified a conserved binding site for CTCF, and functional studies in cultured human cells and ChIP assays with mouse tissue show that CTCF is a novel regulator of
Th
transcription in the forebrain. Together, the findings in this study provide key insights into the upstream regulatory genomic architecture and regulatory mechanisms controlling mammalian
Th
gene transcription. |
doi_str_mv | 10.1007/s12035-018-0936-9 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7416498</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1994210646</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-96c8619fc4212d451ebeb35c8b208bbb5d34544fd150ff44f2d1bf7e2e9a37483</originalsourceid><addsrcrecordid>eNp1kUFr3DAQhUVpaTZJf0AvxdBLL25mZEm2LoWytEkhoRCSs5Dt8dbBlraSHeJ_X5lNQlroaQbmmzd6eoy9R_iMAOVZRA6FzAGrHHShcv2KbVBKnSNW_DXbQKWLvFSiOmLHMd4BcI5QvmVHXAsQWuoNO996FyncU5vd7uMUyI7ZNe3mwU4-LGvbJyDrXXZlx9EOvXXZzRJ87B1lF0sb_MMy2Ein7E1nh0jvHusJu_3-7WZ7kV_-PP-x_XqZN6KEKdeqqRTqrhEceSskUk11IZuq5lDVdS3bQkghuhYldF1qeIt1VxInbYtSVMUJ-3LQ3c_1SG1Dbgp2MPvQjzYsxtve_D1x_S-z8_emFKiEXgU-PQoE_3umOJmxjw0Ng3Xk52hQa4kKFKqEfvwHvfNzcMneSiUHoMRK4YFq0q_EQN3zYxDMGpM5xGRSTGaNyei08-Gli-eNp1wSwA9ATCO3o_Di9H9V_wBnZ552</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1994210646</pqid></control><display><type>article</type><title>Conserved Upstream Regulatory Regions in Mammalian Tyrosine Hydroxylase</title><source>Springer Nature</source><creator>Wang, Meng ; Fones, Lilah ; Cave, John W.</creator><creatorcontrib>Wang, Meng ; Fones, Lilah ; Cave, John W.</creatorcontrib><description>Tyrosine hydroxylase
(
Th
) encodes the rate-limiting enzyme in catecholamine biosynthesis, and the regulation of its transcription is critical for the specification and maintenance of catecholaminergic neuron phenotypes. For many genes, regulatory genomic DNA sequences that are upstream of the proximal promoter control expression levels as well as region-specific expression patterns. The regulatory architecture of the genomic DNA upstream of the
Th
proximal promoter, however, is poorly understood. In this study, we examined the 11 kb upstream nucleotide sequence of
Th
from nine mammalian species and identified five highly conserved regions. Using cultured human cells and mouse olfactory bulb tissue, chromatin immunoprecipitation (ChIP) assays show that these conserved regions recruit transcription factors that are established regulators of
Th
transcription (such as NURR1, PITX3, FOXA2, MEIS2, and PAX6). This analysis also identified a conserved binding site for CTCF, and functional studies in cultured human cells and ChIP assays with mouse tissue show that CTCF is a novel regulator of
Th
transcription in the forebrain. Together, the findings in this study provide key insights into the upstream regulatory genomic architecture and regulatory mechanisms controlling mammalian
Th
gene transcription.</description><identifier>ISSN: 0893-7648</identifier><identifier>EISSN: 1559-1182</identifier><identifier>DOI: 10.1007/s12035-018-0936-9</identifier><identifier>PMID: 29404959</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Animals ; Base Pairing - genetics ; Base Sequence ; Binding Sites ; Biomedical and Life Sciences ; Biomedicine ; Biosynthesis ; Catecholamines ; CCCTC-Binding Factor - metabolism ; Cell Biology ; Chromatin ; Conserved sequence ; Conserved Sequence - genetics ; Deoxyribonucleic acid ; DNA ; Forebrain ; Gene regulation ; Genome ; Humans ; Hydroxylase ; Immunoprecipitation ; Mammals ; Mammals - genetics ; Mice ; Neurobiology ; Neurology ; Neurosciences ; Nuclear receptors ; Nucleotide sequence ; Nurr1 protein ; Olfactory bulb ; Organ Specificity - genetics ; Pax6 protein ; Regulatory sequences ; Regulatory Sequences, Nucleic Acid - genetics ; Rodents ; Sequence Alignment ; Transcription factors ; Transcription Factors - metabolism ; Transcription, Genetic ; Tyrosine 3-monooxygenase ; Tyrosine 3-Monooxygenase - genetics</subject><ispartof>Molecular neurobiology, 2018-09, Vol.55 (9), p.7340-7351</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Molecular Neurobiology is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-96c8619fc4212d451ebeb35c8b208bbb5d34544fd150ff44f2d1bf7e2e9a37483</citedby><cites>FETCH-LOGICAL-c470t-96c8619fc4212d451ebeb35c8b208bbb5d34544fd150ff44f2d1bf7e2e9a37483</cites><orcidid>0000-0003-1792-7219</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29404959$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Meng</creatorcontrib><creatorcontrib>Fones, Lilah</creatorcontrib><creatorcontrib>Cave, John W.</creatorcontrib><title>Conserved Upstream Regulatory Regions in Mammalian Tyrosine Hydroxylase</title><title>Molecular neurobiology</title><addtitle>Mol Neurobiol</addtitle><addtitle>Mol Neurobiol</addtitle><description>Tyrosine hydroxylase
(
Th
) encodes the rate-limiting enzyme in catecholamine biosynthesis, and the regulation of its transcription is critical for the specification and maintenance of catecholaminergic neuron phenotypes. For many genes, regulatory genomic DNA sequences that are upstream of the proximal promoter control expression levels as well as region-specific expression patterns. The regulatory architecture of the genomic DNA upstream of the
Th
proximal promoter, however, is poorly understood. In this study, we examined the 11 kb upstream nucleotide sequence of
Th
from nine mammalian species and identified five highly conserved regions. Using cultured human cells and mouse olfactory bulb tissue, chromatin immunoprecipitation (ChIP) assays show that these conserved regions recruit transcription factors that are established regulators of
Th
transcription (such as NURR1, PITX3, FOXA2, MEIS2, and PAX6). This analysis also identified a conserved binding site for CTCF, and functional studies in cultured human cells and ChIP assays with mouse tissue show that CTCF is a novel regulator of
Th
transcription in the forebrain. Together, the findings in this study provide key insights into the upstream regulatory genomic architecture and regulatory mechanisms controlling mammalian
Th
gene transcription.</description><subject>Animals</subject><subject>Base Pairing - genetics</subject><subject>Base Sequence</subject><subject>Binding Sites</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Biosynthesis</subject><subject>Catecholamines</subject><subject>CCCTC-Binding Factor - metabolism</subject><subject>Cell Biology</subject><subject>Chromatin</subject><subject>Conserved sequence</subject><subject>Conserved Sequence - genetics</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Forebrain</subject><subject>Gene regulation</subject><subject>Genome</subject><subject>Humans</subject><subject>Hydroxylase</subject><subject>Immunoprecipitation</subject><subject>Mammals</subject><subject>Mammals - genetics</subject><subject>Mice</subject><subject>Neurobiology</subject><subject>Neurology</subject><subject>Neurosciences</subject><subject>Nuclear receptors</subject><subject>Nucleotide sequence</subject><subject>Nurr1 protein</subject><subject>Olfactory bulb</subject><subject>Organ Specificity - genetics</subject><subject>Pax6 protein</subject><subject>Regulatory sequences</subject><subject>Regulatory Sequences, Nucleic Acid - genetics</subject><subject>Rodents</subject><subject>Sequence Alignment</subject><subject>Transcription factors</subject><subject>Transcription Factors - metabolism</subject><subject>Transcription, Genetic</subject><subject>Tyrosine 3-monooxygenase</subject><subject>Tyrosine 3-Monooxygenase - genetics</subject><issn>0893-7648</issn><issn>1559-1182</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kUFr3DAQhUVpaTZJf0AvxdBLL25mZEm2LoWytEkhoRCSs5Dt8dbBlraSHeJ_X5lNQlroaQbmmzd6eoy9R_iMAOVZRA6FzAGrHHShcv2KbVBKnSNW_DXbQKWLvFSiOmLHMd4BcI5QvmVHXAsQWuoNO996FyncU5vd7uMUyI7ZNe3mwU4-LGvbJyDrXXZlx9EOvXXZzRJ87B1lF0sb_MMy2Ein7E1nh0jvHusJu_3-7WZ7kV_-PP-x_XqZN6KEKdeqqRTqrhEceSskUk11IZuq5lDVdS3bQkghuhYldF1qeIt1VxInbYtSVMUJ-3LQ3c_1SG1Dbgp2MPvQjzYsxtve_D1x_S-z8_emFKiEXgU-PQoE_3umOJmxjw0Ng3Xk52hQa4kKFKqEfvwHvfNzcMneSiUHoMRK4YFq0q_EQN3zYxDMGpM5xGRSTGaNyei08-Gli-eNp1wSwA9ATCO3o_Di9H9V_wBnZ552</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Wang, Meng</creator><creator>Fones, Lilah</creator><creator>Cave, John W.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1792-7219</orcidid></search><sort><creationdate>20180901</creationdate><title>Conserved Upstream Regulatory Regions in Mammalian Tyrosine Hydroxylase</title><author>Wang, Meng ; Fones, Lilah ; Cave, John W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-96c8619fc4212d451ebeb35c8b208bbb5d34544fd150ff44f2d1bf7e2e9a37483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Base Pairing - genetics</topic><topic>Base Sequence</topic><topic>Binding Sites</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Biosynthesis</topic><topic>Catecholamines</topic><topic>CCCTC-Binding Factor - metabolism</topic><topic>Cell Biology</topic><topic>Chromatin</topic><topic>Conserved sequence</topic><topic>Conserved Sequence - genetics</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Forebrain</topic><topic>Gene regulation</topic><topic>Genome</topic><topic>Humans</topic><topic>Hydroxylase</topic><topic>Immunoprecipitation</topic><topic>Mammals</topic><topic>Mammals - genetics</topic><topic>Mice</topic><topic>Neurobiology</topic><topic>Neurology</topic><topic>Neurosciences</topic><topic>Nuclear receptors</topic><topic>Nucleotide sequence</topic><topic>Nurr1 protein</topic><topic>Olfactory bulb</topic><topic>Organ Specificity - genetics</topic><topic>Pax6 protein</topic><topic>Regulatory sequences</topic><topic>Regulatory Sequences, Nucleic Acid - genetics</topic><topic>Rodents</topic><topic>Sequence Alignment</topic><topic>Transcription factors</topic><topic>Transcription Factors - metabolism</topic><topic>Transcription, Genetic</topic><topic>Tyrosine 3-monooxygenase</topic><topic>Tyrosine 3-Monooxygenase - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Meng</creatorcontrib><creatorcontrib>Fones, Lilah</creatorcontrib><creatorcontrib>Cave, John W.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Science Database (ProQuest)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular neurobiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Meng</au><au>Fones, Lilah</au><au>Cave, John W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conserved Upstream Regulatory Regions in Mammalian Tyrosine Hydroxylase</atitle><jtitle>Molecular neurobiology</jtitle><stitle>Mol Neurobiol</stitle><addtitle>Mol Neurobiol</addtitle><date>2018-09-01</date><risdate>2018</risdate><volume>55</volume><issue>9</issue><spage>7340</spage><epage>7351</epage><pages>7340-7351</pages><issn>0893-7648</issn><eissn>1559-1182</eissn><abstract>Tyrosine hydroxylase
(
Th
) encodes the rate-limiting enzyme in catecholamine biosynthesis, and the regulation of its transcription is critical for the specification and maintenance of catecholaminergic neuron phenotypes. For many genes, regulatory genomic DNA sequences that are upstream of the proximal promoter control expression levels as well as region-specific expression patterns. The regulatory architecture of the genomic DNA upstream of the
Th
proximal promoter, however, is poorly understood. In this study, we examined the 11 kb upstream nucleotide sequence of
Th
from nine mammalian species and identified five highly conserved regions. Using cultured human cells and mouse olfactory bulb tissue, chromatin immunoprecipitation (ChIP) assays show that these conserved regions recruit transcription factors that are established regulators of
Th
transcription (such as NURR1, PITX3, FOXA2, MEIS2, and PAX6). This analysis also identified a conserved binding site for CTCF, and functional studies in cultured human cells and ChIP assays with mouse tissue show that CTCF is a novel regulator of
Th
transcription in the forebrain. Together, the findings in this study provide key insights into the upstream regulatory genomic architecture and regulatory mechanisms controlling mammalian
Th
gene transcription.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>29404959</pmid><doi>10.1007/s12035-018-0936-9</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-1792-7219</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0893-7648 |
ispartof | Molecular neurobiology, 2018-09, Vol.55 (9), p.7340-7351 |
issn | 0893-7648 1559-1182 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7416498 |
source | Springer Nature |
subjects | Animals Base Pairing - genetics Base Sequence Binding Sites Biomedical and Life Sciences Biomedicine Biosynthesis Catecholamines CCCTC-Binding Factor - metabolism Cell Biology Chromatin Conserved sequence Conserved Sequence - genetics Deoxyribonucleic acid DNA Forebrain Gene regulation Genome Humans Hydroxylase Immunoprecipitation Mammals Mammals - genetics Mice Neurobiology Neurology Neurosciences Nuclear receptors Nucleotide sequence Nurr1 protein Olfactory bulb Organ Specificity - genetics Pax6 protein Regulatory sequences Regulatory Sequences, Nucleic Acid - genetics Rodents Sequence Alignment Transcription factors Transcription Factors - metabolism Transcription, Genetic Tyrosine 3-monooxygenase Tyrosine 3-Monooxygenase - genetics |
title | Conserved Upstream Regulatory Regions in Mammalian Tyrosine Hydroxylase |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T02%3A12%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conserved%20Upstream%20Regulatory%20Regions%20in%20Mammalian%20Tyrosine%20Hydroxylase&rft.jtitle=Molecular%20neurobiology&rft.au=Wang,%20Meng&rft.date=2018-09-01&rft.volume=55&rft.issue=9&rft.spage=7340&rft.epage=7351&rft.pages=7340-7351&rft.issn=0893-7648&rft.eissn=1559-1182&rft_id=info:doi/10.1007/s12035-018-0936-9&rft_dat=%3Cproquest_pubme%3E1994210646%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c470t-96c8619fc4212d451ebeb35c8b208bbb5d34544fd150ff44f2d1bf7e2e9a37483%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1994210646&rft_id=info:pmid/29404959&rfr_iscdi=true |