Loading…

Parallel in time dynamics with quantum annealers

Recent years have witnessed an unprecedented increase in experiments and hybrid simulations involving quantum computers. In particular, quantum annealers. There exist a plethora of algorithms promising to outperform classical computers in the near-term future. Here, we propose a parallel in time app...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2020-08, Vol.10 (1), p.13534-13534, Article 13534
Main Authors: Jałowiecki, Konrad, Więckowski, Andrzej, Gawron, Piotr, Gardas, Bartłomiej
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Recent years have witnessed an unprecedented increase in experiments and hybrid simulations involving quantum computers. In particular, quantum annealers. There exist a plethora of algorithms promising to outperform classical computers in the near-term future. Here, we propose a parallel in time approach to simulate dynamical systems designed to be executed already on present-day quantum annealers. In essence, purely classical methods for solving dynamics systems are serial. Therefore, their parallelization is substantially limited. In the presented approach, however, the time evolution is rephrased as a ground-state search of a classical Ising model. Such a problem is solved intrinsically in parallel by quantum computers. The main idea is exemplified by simulating the Rabi oscillations generated by a two-level quantum system (i.e. qubit) experimentally.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-020-70017-x