Loading…
Reliable Computational Prediction of the Supramolecular Ordering of Complex Molecules under Electrochemical Conditions
We propose a computationally lean, two-stage approach that reliably predicts self-assembly behavior of complex charged molecules on metallic surfaces under electrochemical conditions. Stage one uses ab initio simulations to provide reference data for the energies (evaluated for archetypical configur...
Saved in:
Published in: | Journal of chemical theory and computation 2020-08, Vol.16 (8), p.5227-5243 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a438t-8aab4d1b86b048e7be5eab08914af1186f44520a3620c0bb50ac53f6cdab78e23 |
---|---|
cites | cdi_FETCH-LOGICAL-a438t-8aab4d1b86b048e7be5eab08914af1186f44520a3620c0bb50ac53f6cdab78e23 |
container_end_page | 5243 |
container_issue | 8 |
container_start_page | 5227 |
container_title | Journal of chemical theory and computation |
container_volume | 16 |
creator | Hartl, Benedikt Sharma, Shubham Brügner, Oliver Mertens, Stijn F. L Walter, Michael Kahl, Gerhard |
description | We propose a computationally lean, two-stage approach that reliably predicts self-assembly behavior of complex charged molecules on metallic surfaces under electrochemical conditions. Stage one uses ab initio simulations to provide reference data for the energies (evaluated for archetypical configurations) to fit the parameters of a conceptually much simpler and computationally less expensive force field of the molecules: classical, spherical particles, representing the respective atomic entities; a flat and perfectly conducting wall represents the metallic surface. Stage two feeds the energies that emerge from this force field into highly efficient and reliable optimization techniques to identify via energy minimization the ordered ground-state configurations of the molecules. We demonstrate the power of our approach by successfully reproducing, on a semiquantitative level, the intricate supramolecular ordering observed experimentally for PQP+ and ClO4 – molecules at an Au(111)–electrolyte interface, including the formation of open-porous, self-host–guest, and stratified bilayer phases as a function of the electric field at the solid–liquid interface. We also discuss the role of the perchlorate ions in the self-assembly process, whose positions could not be identified in the related experimental investigations. |
doi_str_mv | 10.1021/acs.jctc.9b01251 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7426907</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2436431952</sourcerecordid><originalsourceid>FETCH-LOGICAL-a438t-8aab4d1b86b048e7be5eab08914af1186f44520a3620c0bb50ac53f6cdab78e23</originalsourceid><addsrcrecordid>eNp1kc2LFDEQxRtR3HX17jHgxcPOWPmc7osgw_oBKyt-nEMlXb2TId0Zk-5F_3u7nXFBwVNSvPd-FPWq6jmHNQfBX6Ev670f_bpxwIXmD6pzrlWzaowwD-__vD6rnpSyB5BSCfm4OpNCS8MNnFd3nykGdJHYNvWHacQxpAEj-5SpDX4ZWOrYuCP2ZTpk7FMkP0XM7Ca3lMNwu8hLNNIP9vGoUmHTMKvsah7HnPyO-uBn6DYNbViY5Wn1qMNY6Nnpvai-vb36un2_ur5592H75nqFStbjqkZ0quWuNg5UTRtHmtBB3XCFHee16ZTSAlAaAR6c04Bey874Ft2mJiEvqtdH7mFyPbWehjFjtIccesw_bcJg_1aGsLO36c5ulDANbGbAyxMgp-8TldH2oXiKEQdKU7FCcQUASuvZ-uIf6z5NeT7m4pJGSd7oZSM4unxOpWTq7pfhYJdS7VyqXUq1p1LnyOUx8lv5w_yv_Rese6dY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2436431952</pqid></control><display><type>article</type><title>Reliable Computational Prediction of the Supramolecular Ordering of Complex Molecules under Electrochemical Conditions</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Hartl, Benedikt ; Sharma, Shubham ; Brügner, Oliver ; Mertens, Stijn F. L ; Walter, Michael ; Kahl, Gerhard</creator><creatorcontrib>Hartl, Benedikt ; Sharma, Shubham ; Brügner, Oliver ; Mertens, Stijn F. L ; Walter, Michael ; Kahl, Gerhard</creatorcontrib><description>We propose a computationally lean, two-stage approach that reliably predicts self-assembly behavior of complex charged molecules on metallic surfaces under electrochemical conditions. Stage one uses ab initio simulations to provide reference data for the energies (evaluated for archetypical configurations) to fit the parameters of a conceptually much simpler and computationally less expensive force field of the molecules: classical, spherical particles, representing the respective atomic entities; a flat and perfectly conducting wall represents the metallic surface. Stage two feeds the energies that emerge from this force field into highly efficient and reliable optimization techniques to identify via energy minimization the ordered ground-state configurations of the molecules. We demonstrate the power of our approach by successfully reproducing, on a semiquantitative level, the intricate supramolecular ordering observed experimentally for PQP+ and ClO4 – molecules at an Au(111)–electrolyte interface, including the formation of open-porous, self-host–guest, and stratified bilayer phases as a function of the electric field at the solid–liquid interface. We also discuss the role of the perchlorate ions in the self-assembly process, whose positions could not be identified in the related experimental investigations.</description><identifier>ISSN: 1549-9618</identifier><identifier>EISSN: 1549-9626</identifier><identifier>DOI: 10.1021/acs.jctc.9b01251</identifier><identifier>PMID: 32536160</identifier><language>eng</language><publisher>Washington: American Chemical Society</publisher><subject>Computer simulation ; Condensed Matter, Interfaces, and Materials ; Configurations ; Electric fields ; Energy conservation ; Liquid-solid interfaces ; Optimization ; Optimization techniques ; Self-assembly</subject><ispartof>Journal of chemical theory and computation, 2020-08, Vol.16 (8), p.5227-5243</ispartof><rights>Copyright American Chemical Society Aug 11, 2020</rights><rights>Copyright © 2020 American Chemical Society 2020 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a438t-8aab4d1b86b048e7be5eab08914af1186f44520a3620c0bb50ac53f6cdab78e23</citedby><cites>FETCH-LOGICAL-a438t-8aab4d1b86b048e7be5eab08914af1186f44520a3620c0bb50ac53f6cdab78e23</cites><orcidid>0000-0001-7787-4839 ; 0000-0001-6679-2491 ; 0000-0002-5715-0486 ; 0000-0002-4375-4684</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids></links><search><creatorcontrib>Hartl, Benedikt</creatorcontrib><creatorcontrib>Sharma, Shubham</creatorcontrib><creatorcontrib>Brügner, Oliver</creatorcontrib><creatorcontrib>Mertens, Stijn F. L</creatorcontrib><creatorcontrib>Walter, Michael</creatorcontrib><creatorcontrib>Kahl, Gerhard</creatorcontrib><title>Reliable Computational Prediction of the Supramolecular Ordering of Complex Molecules under Electrochemical Conditions</title><title>Journal of chemical theory and computation</title><addtitle>J. Chem. Theory Comput</addtitle><description>We propose a computationally lean, two-stage approach that reliably predicts self-assembly behavior of complex charged molecules on metallic surfaces under electrochemical conditions. Stage one uses ab initio simulations to provide reference data for the energies (evaluated for archetypical configurations) to fit the parameters of a conceptually much simpler and computationally less expensive force field of the molecules: classical, spherical particles, representing the respective atomic entities; a flat and perfectly conducting wall represents the metallic surface. Stage two feeds the energies that emerge from this force field into highly efficient and reliable optimization techniques to identify via energy minimization the ordered ground-state configurations of the molecules. We demonstrate the power of our approach by successfully reproducing, on a semiquantitative level, the intricate supramolecular ordering observed experimentally for PQP+ and ClO4 – molecules at an Au(111)–electrolyte interface, including the formation of open-porous, self-host–guest, and stratified bilayer phases as a function of the electric field at the solid–liquid interface. We also discuss the role of the perchlorate ions in the self-assembly process, whose positions could not be identified in the related experimental investigations.</description><subject>Computer simulation</subject><subject>Condensed Matter, Interfaces, and Materials</subject><subject>Configurations</subject><subject>Electric fields</subject><subject>Energy conservation</subject><subject>Liquid-solid interfaces</subject><subject>Optimization</subject><subject>Optimization techniques</subject><subject>Self-assembly</subject><issn>1549-9618</issn><issn>1549-9626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kc2LFDEQxRtR3HX17jHgxcPOWPmc7osgw_oBKyt-nEMlXb2TId0Zk-5F_3u7nXFBwVNSvPd-FPWq6jmHNQfBX6Ev670f_bpxwIXmD6pzrlWzaowwD-__vD6rnpSyB5BSCfm4OpNCS8MNnFd3nykGdJHYNvWHacQxpAEj-5SpDX4ZWOrYuCP2ZTpk7FMkP0XM7Ca3lMNwu8hLNNIP9vGoUmHTMKvsah7HnPyO-uBn6DYNbViY5Wn1qMNY6Nnpvai-vb36un2_ur5592H75nqFStbjqkZ0quWuNg5UTRtHmtBB3XCFHee16ZTSAlAaAR6c04Bey874Ft2mJiEvqtdH7mFyPbWehjFjtIccesw_bcJg_1aGsLO36c5ulDANbGbAyxMgp-8TldH2oXiKEQdKU7FCcQUASuvZ-uIf6z5NeT7m4pJGSd7oZSM4unxOpWTq7pfhYJdS7VyqXUq1p1LnyOUx8lv5w_yv_Rese6dY</recordid><startdate>20200811</startdate><enddate>20200811</enddate><creator>Hartl, Benedikt</creator><creator>Sharma, Shubham</creator><creator>Brügner, Oliver</creator><creator>Mertens, Stijn F. L</creator><creator>Walter, Michael</creator><creator>Kahl, Gerhard</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7787-4839</orcidid><orcidid>https://orcid.org/0000-0001-6679-2491</orcidid><orcidid>https://orcid.org/0000-0002-5715-0486</orcidid><orcidid>https://orcid.org/0000-0002-4375-4684</orcidid></search><sort><creationdate>20200811</creationdate><title>Reliable Computational Prediction of the Supramolecular Ordering of Complex Molecules under Electrochemical Conditions</title><author>Hartl, Benedikt ; Sharma, Shubham ; Brügner, Oliver ; Mertens, Stijn F. L ; Walter, Michael ; Kahl, Gerhard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a438t-8aab4d1b86b048e7be5eab08914af1186f44520a3620c0bb50ac53f6cdab78e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computer simulation</topic><topic>Condensed Matter, Interfaces, and Materials</topic><topic>Configurations</topic><topic>Electric fields</topic><topic>Energy conservation</topic><topic>Liquid-solid interfaces</topic><topic>Optimization</topic><topic>Optimization techniques</topic><topic>Self-assembly</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hartl, Benedikt</creatorcontrib><creatorcontrib>Sharma, Shubham</creatorcontrib><creatorcontrib>Brügner, Oliver</creatorcontrib><creatorcontrib>Mertens, Stijn F. L</creatorcontrib><creatorcontrib>Walter, Michael</creatorcontrib><creatorcontrib>Kahl, Gerhard</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of chemical theory and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hartl, Benedikt</au><au>Sharma, Shubham</au><au>Brügner, Oliver</au><au>Mertens, Stijn F. L</au><au>Walter, Michael</au><au>Kahl, Gerhard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reliable Computational Prediction of the Supramolecular Ordering of Complex Molecules under Electrochemical Conditions</atitle><jtitle>Journal of chemical theory and computation</jtitle><addtitle>J. Chem. Theory Comput</addtitle><date>2020-08-11</date><risdate>2020</risdate><volume>16</volume><issue>8</issue><spage>5227</spage><epage>5243</epage><pages>5227-5243</pages><issn>1549-9618</issn><eissn>1549-9626</eissn><abstract>We propose a computationally lean, two-stage approach that reliably predicts self-assembly behavior of complex charged molecules on metallic surfaces under electrochemical conditions. Stage one uses ab initio simulations to provide reference data for the energies (evaluated for archetypical configurations) to fit the parameters of a conceptually much simpler and computationally less expensive force field of the molecules: classical, spherical particles, representing the respective atomic entities; a flat and perfectly conducting wall represents the metallic surface. Stage two feeds the energies that emerge from this force field into highly efficient and reliable optimization techniques to identify via energy minimization the ordered ground-state configurations of the molecules. We demonstrate the power of our approach by successfully reproducing, on a semiquantitative level, the intricate supramolecular ordering observed experimentally for PQP+ and ClO4 – molecules at an Au(111)–electrolyte interface, including the formation of open-porous, self-host–guest, and stratified bilayer phases as a function of the electric field at the solid–liquid interface. We also discuss the role of the perchlorate ions in the self-assembly process, whose positions could not be identified in the related experimental investigations.</abstract><cop>Washington</cop><pub>American Chemical Society</pub><pmid>32536160</pmid><doi>10.1021/acs.jctc.9b01251</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-7787-4839</orcidid><orcidid>https://orcid.org/0000-0001-6679-2491</orcidid><orcidid>https://orcid.org/0000-0002-5715-0486</orcidid><orcidid>https://orcid.org/0000-0002-4375-4684</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-9618 |
ispartof | Journal of chemical theory and computation, 2020-08, Vol.16 (8), p.5227-5243 |
issn | 1549-9618 1549-9626 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7426907 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Computer simulation Condensed Matter, Interfaces, and Materials Configurations Electric fields Energy conservation Liquid-solid interfaces Optimization Optimization techniques Self-assembly |
title | Reliable Computational Prediction of the Supramolecular Ordering of Complex Molecules under Electrochemical Conditions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T11%3A00%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reliable%20Computational%20Prediction%20of%20the%20Supramolecular%20Ordering%20of%20Complex%20Molecules%20under%20Electrochemical%20Conditions&rft.jtitle=Journal%20of%20chemical%20theory%20and%20computation&rft.au=Hartl,%20Benedikt&rft.date=2020-08-11&rft.volume=16&rft.issue=8&rft.spage=5227&rft.epage=5243&rft.pages=5227-5243&rft.issn=1549-9618&rft.eissn=1549-9626&rft_id=info:doi/10.1021/acs.jctc.9b01251&rft_dat=%3Cproquest_pubme%3E2436431952%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a438t-8aab4d1b86b048e7be5eab08914af1186f44520a3620c0bb50ac53f6cdab78e23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2436431952&rft_id=info:pmid/32536160&rfr_iscdi=true |