Loading…

Reliable Computational Prediction of the Supramolecular Ordering of Complex Molecules under Electrochemical Conditions

We propose a computationally lean, two-stage approach that reliably predicts self-assembly behavior of complex charged molecules on metallic surfaces under electrochemical conditions. Stage one uses ab initio simulations to provide reference data for the energies (evaluated for archetypical configur...

Full description

Saved in:
Bibliographic Details
Published in:Journal of chemical theory and computation 2020-08, Vol.16 (8), p.5227-5243
Main Authors: Hartl, Benedikt, Sharma, Shubham, Brügner, Oliver, Mertens, Stijn F. L, Walter, Michael, Kahl, Gerhard
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a438t-8aab4d1b86b048e7be5eab08914af1186f44520a3620c0bb50ac53f6cdab78e23
cites cdi_FETCH-LOGICAL-a438t-8aab4d1b86b048e7be5eab08914af1186f44520a3620c0bb50ac53f6cdab78e23
container_end_page 5243
container_issue 8
container_start_page 5227
container_title Journal of chemical theory and computation
container_volume 16
creator Hartl, Benedikt
Sharma, Shubham
Brügner, Oliver
Mertens, Stijn F. L
Walter, Michael
Kahl, Gerhard
description We propose a computationally lean, two-stage approach that reliably predicts self-assembly behavior of complex charged molecules on metallic surfaces under electrochemical conditions. Stage one uses ab initio simulations to provide reference data for the energies (evaluated for archetypical configurations) to fit the parameters of a conceptually much simpler and computationally less expensive force field of the molecules: classical, spherical particles, representing the respective atomic entities; a flat and perfectly conducting wall represents the metallic surface. Stage two feeds the energies that emerge from this force field into highly efficient and reliable optimization techniques to identify via energy minimization the ordered ground-state configurations of the molecules. We demonstrate the power of our approach by successfully reproducing, on a semiquantitative level, the intricate supramolecular ordering observed experimentally for PQP+ and ClO4 – molecules at an Au(111)–electrolyte interface, including the formation of open-porous, self-host–guest, and stratified bilayer phases as a function of the electric field at the solid–liquid interface. We also discuss the role of the perchlorate ions in the self-assembly process, whose positions could not be identified in the related experimental investigations.
doi_str_mv 10.1021/acs.jctc.9b01251
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7426907</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2436431952</sourcerecordid><originalsourceid>FETCH-LOGICAL-a438t-8aab4d1b86b048e7be5eab08914af1186f44520a3620c0bb50ac53f6cdab78e23</originalsourceid><addsrcrecordid>eNp1kc2LFDEQxRtR3HX17jHgxcPOWPmc7osgw_oBKyt-nEMlXb2TId0Zk-5F_3u7nXFBwVNSvPd-FPWq6jmHNQfBX6Ev670f_bpxwIXmD6pzrlWzaowwD-__vD6rnpSyB5BSCfm4OpNCS8MNnFd3nykGdJHYNvWHacQxpAEj-5SpDX4ZWOrYuCP2ZTpk7FMkP0XM7Ca3lMNwu8hLNNIP9vGoUmHTMKvsah7HnPyO-uBn6DYNbViY5Wn1qMNY6Nnpvai-vb36un2_ur5592H75nqFStbjqkZ0quWuNg5UTRtHmtBB3XCFHee16ZTSAlAaAR6c04Bey874Ft2mJiEvqtdH7mFyPbWehjFjtIccesw_bcJg_1aGsLO36c5ulDANbGbAyxMgp-8TldH2oXiKEQdKU7FCcQUASuvZ-uIf6z5NeT7m4pJGSd7oZSM4unxOpWTq7pfhYJdS7VyqXUq1p1LnyOUx8lv5w_yv_Rese6dY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2436431952</pqid></control><display><type>article</type><title>Reliable Computational Prediction of the Supramolecular Ordering of Complex Molecules under Electrochemical Conditions</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Hartl, Benedikt ; Sharma, Shubham ; Brügner, Oliver ; Mertens, Stijn F. L ; Walter, Michael ; Kahl, Gerhard</creator><creatorcontrib>Hartl, Benedikt ; Sharma, Shubham ; Brügner, Oliver ; Mertens, Stijn F. L ; Walter, Michael ; Kahl, Gerhard</creatorcontrib><description>We propose a computationally lean, two-stage approach that reliably predicts self-assembly behavior of complex charged molecules on metallic surfaces under electrochemical conditions. Stage one uses ab initio simulations to provide reference data for the energies (evaluated for archetypical configurations) to fit the parameters of a conceptually much simpler and computationally less expensive force field of the molecules: classical, spherical particles, representing the respective atomic entities; a flat and perfectly conducting wall represents the metallic surface. Stage two feeds the energies that emerge from this force field into highly efficient and reliable optimization techniques to identify via energy minimization the ordered ground-state configurations of the molecules. We demonstrate the power of our approach by successfully reproducing, on a semiquantitative level, the intricate supramolecular ordering observed experimentally for PQP+ and ClO4 – molecules at an Au(111)–electrolyte interface, including the formation of open-porous, self-host–guest, and stratified bilayer phases as a function of the electric field at the solid–liquid interface. We also discuss the role of the perchlorate ions in the self-assembly process, whose positions could not be identified in the related experimental investigations.</description><identifier>ISSN: 1549-9618</identifier><identifier>EISSN: 1549-9626</identifier><identifier>DOI: 10.1021/acs.jctc.9b01251</identifier><identifier>PMID: 32536160</identifier><language>eng</language><publisher>Washington: American Chemical Society</publisher><subject>Computer simulation ; Condensed Matter, Interfaces, and Materials ; Configurations ; Electric fields ; Energy conservation ; Liquid-solid interfaces ; Optimization ; Optimization techniques ; Self-assembly</subject><ispartof>Journal of chemical theory and computation, 2020-08, Vol.16 (8), p.5227-5243</ispartof><rights>Copyright American Chemical Society Aug 11, 2020</rights><rights>Copyright © 2020 American Chemical Society 2020 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a438t-8aab4d1b86b048e7be5eab08914af1186f44520a3620c0bb50ac53f6cdab78e23</citedby><cites>FETCH-LOGICAL-a438t-8aab4d1b86b048e7be5eab08914af1186f44520a3620c0bb50ac53f6cdab78e23</cites><orcidid>0000-0001-7787-4839 ; 0000-0001-6679-2491 ; 0000-0002-5715-0486 ; 0000-0002-4375-4684</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids></links><search><creatorcontrib>Hartl, Benedikt</creatorcontrib><creatorcontrib>Sharma, Shubham</creatorcontrib><creatorcontrib>Brügner, Oliver</creatorcontrib><creatorcontrib>Mertens, Stijn F. L</creatorcontrib><creatorcontrib>Walter, Michael</creatorcontrib><creatorcontrib>Kahl, Gerhard</creatorcontrib><title>Reliable Computational Prediction of the Supramolecular Ordering of Complex Molecules under Electrochemical Conditions</title><title>Journal of chemical theory and computation</title><addtitle>J. Chem. Theory Comput</addtitle><description>We propose a computationally lean, two-stage approach that reliably predicts self-assembly behavior of complex charged molecules on metallic surfaces under electrochemical conditions. Stage one uses ab initio simulations to provide reference data for the energies (evaluated for archetypical configurations) to fit the parameters of a conceptually much simpler and computationally less expensive force field of the molecules: classical, spherical particles, representing the respective atomic entities; a flat and perfectly conducting wall represents the metallic surface. Stage two feeds the energies that emerge from this force field into highly efficient and reliable optimization techniques to identify via energy minimization the ordered ground-state configurations of the molecules. We demonstrate the power of our approach by successfully reproducing, on a semiquantitative level, the intricate supramolecular ordering observed experimentally for PQP+ and ClO4 – molecules at an Au(111)–electrolyte interface, including the formation of open-porous, self-host–guest, and stratified bilayer phases as a function of the electric field at the solid–liquid interface. We also discuss the role of the perchlorate ions in the self-assembly process, whose positions could not be identified in the related experimental investigations.</description><subject>Computer simulation</subject><subject>Condensed Matter, Interfaces, and Materials</subject><subject>Configurations</subject><subject>Electric fields</subject><subject>Energy conservation</subject><subject>Liquid-solid interfaces</subject><subject>Optimization</subject><subject>Optimization techniques</subject><subject>Self-assembly</subject><issn>1549-9618</issn><issn>1549-9626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kc2LFDEQxRtR3HX17jHgxcPOWPmc7osgw_oBKyt-nEMlXb2TId0Zk-5F_3u7nXFBwVNSvPd-FPWq6jmHNQfBX6Ev670f_bpxwIXmD6pzrlWzaowwD-__vD6rnpSyB5BSCfm4OpNCS8MNnFd3nykGdJHYNvWHacQxpAEj-5SpDX4ZWOrYuCP2ZTpk7FMkP0XM7Ca3lMNwu8hLNNIP9vGoUmHTMKvsah7HnPyO-uBn6DYNbViY5Wn1qMNY6Nnpvai-vb36un2_ur5592H75nqFStbjqkZ0quWuNg5UTRtHmtBB3XCFHee16ZTSAlAaAR6c04Bey874Ft2mJiEvqtdH7mFyPbWehjFjtIccesw_bcJg_1aGsLO36c5ulDANbGbAyxMgp-8TldH2oXiKEQdKU7FCcQUASuvZ-uIf6z5NeT7m4pJGSd7oZSM4unxOpWTq7pfhYJdS7VyqXUq1p1LnyOUx8lv5w_yv_Rese6dY</recordid><startdate>20200811</startdate><enddate>20200811</enddate><creator>Hartl, Benedikt</creator><creator>Sharma, Shubham</creator><creator>Brügner, Oliver</creator><creator>Mertens, Stijn F. L</creator><creator>Walter, Michael</creator><creator>Kahl, Gerhard</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7787-4839</orcidid><orcidid>https://orcid.org/0000-0001-6679-2491</orcidid><orcidid>https://orcid.org/0000-0002-5715-0486</orcidid><orcidid>https://orcid.org/0000-0002-4375-4684</orcidid></search><sort><creationdate>20200811</creationdate><title>Reliable Computational Prediction of the Supramolecular Ordering of Complex Molecules under Electrochemical Conditions</title><author>Hartl, Benedikt ; Sharma, Shubham ; Brügner, Oliver ; Mertens, Stijn F. L ; Walter, Michael ; Kahl, Gerhard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a438t-8aab4d1b86b048e7be5eab08914af1186f44520a3620c0bb50ac53f6cdab78e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computer simulation</topic><topic>Condensed Matter, Interfaces, and Materials</topic><topic>Configurations</topic><topic>Electric fields</topic><topic>Energy conservation</topic><topic>Liquid-solid interfaces</topic><topic>Optimization</topic><topic>Optimization techniques</topic><topic>Self-assembly</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hartl, Benedikt</creatorcontrib><creatorcontrib>Sharma, Shubham</creatorcontrib><creatorcontrib>Brügner, Oliver</creatorcontrib><creatorcontrib>Mertens, Stijn F. L</creatorcontrib><creatorcontrib>Walter, Michael</creatorcontrib><creatorcontrib>Kahl, Gerhard</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of chemical theory and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hartl, Benedikt</au><au>Sharma, Shubham</au><au>Brügner, Oliver</au><au>Mertens, Stijn F. L</au><au>Walter, Michael</au><au>Kahl, Gerhard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reliable Computational Prediction of the Supramolecular Ordering of Complex Molecules under Electrochemical Conditions</atitle><jtitle>Journal of chemical theory and computation</jtitle><addtitle>J. Chem. Theory Comput</addtitle><date>2020-08-11</date><risdate>2020</risdate><volume>16</volume><issue>8</issue><spage>5227</spage><epage>5243</epage><pages>5227-5243</pages><issn>1549-9618</issn><eissn>1549-9626</eissn><abstract>We propose a computationally lean, two-stage approach that reliably predicts self-assembly behavior of complex charged molecules on metallic surfaces under electrochemical conditions. Stage one uses ab initio simulations to provide reference data for the energies (evaluated for archetypical configurations) to fit the parameters of a conceptually much simpler and computationally less expensive force field of the molecules: classical, spherical particles, representing the respective atomic entities; a flat and perfectly conducting wall represents the metallic surface. Stage two feeds the energies that emerge from this force field into highly efficient and reliable optimization techniques to identify via energy minimization the ordered ground-state configurations of the molecules. We demonstrate the power of our approach by successfully reproducing, on a semiquantitative level, the intricate supramolecular ordering observed experimentally for PQP+ and ClO4 – molecules at an Au(111)–electrolyte interface, including the formation of open-porous, self-host–guest, and stratified bilayer phases as a function of the electric field at the solid–liquid interface. We also discuss the role of the perchlorate ions in the self-assembly process, whose positions could not be identified in the related experimental investigations.</abstract><cop>Washington</cop><pub>American Chemical Society</pub><pmid>32536160</pmid><doi>10.1021/acs.jctc.9b01251</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-7787-4839</orcidid><orcidid>https://orcid.org/0000-0001-6679-2491</orcidid><orcidid>https://orcid.org/0000-0002-5715-0486</orcidid><orcidid>https://orcid.org/0000-0002-4375-4684</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1549-9618
ispartof Journal of chemical theory and computation, 2020-08, Vol.16 (8), p.5227-5243
issn 1549-9618
1549-9626
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7426907
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Computer simulation
Condensed Matter, Interfaces, and Materials
Configurations
Electric fields
Energy conservation
Liquid-solid interfaces
Optimization
Optimization techniques
Self-assembly
title Reliable Computational Prediction of the Supramolecular Ordering of Complex Molecules under Electrochemical Conditions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T11%3A00%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reliable%20Computational%20Prediction%20of%20the%20Supramolecular%20Ordering%20of%20Complex%20Molecules%20under%20Electrochemical%20Conditions&rft.jtitle=Journal%20of%20chemical%20theory%20and%20computation&rft.au=Hartl,%20Benedikt&rft.date=2020-08-11&rft.volume=16&rft.issue=8&rft.spage=5227&rft.epage=5243&rft.pages=5227-5243&rft.issn=1549-9618&rft.eissn=1549-9626&rft_id=info:doi/10.1021/acs.jctc.9b01251&rft_dat=%3Cproquest_pubme%3E2436431952%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a438t-8aab4d1b86b048e7be5eab08914af1186f44520a3620c0bb50ac53f6cdab78e23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2436431952&rft_id=info:pmid/32536160&rfr_iscdi=true