Loading…

Effects of Scavenging, Entrainment, and Aqueous Chemistry on Peroxides and Formaldehyde in Deep Convective Outflow Over the Central and Southeast United States

Deep convective transport of gaseous precursors to ozone (O3) and aerosols to the upper troposphere is affected by liquid phase and mixed‐phase scavenging, entrainment of free tropospheric air and aqueous chemistry. The contributions of these processes are examined using aircraft measurements obtain...

Full description

Saved in:
Bibliographic Details
Published in:Journal of geophysical research. Atmospheres 2018-07, Vol.123 (14), p.7594-7614
Main Authors: Bela, Megan M., Barth, Mary C., Toon, Owen Brian, Fried, Alan, Ziegler, Conrad, Cummings, Kristin A., Li, Yunyao, Pickering, Kenneth E., Homeyer, Cameron R., Morrison, Hugh, Yang, Qing, Mecikalski, Retha M., Carey, Larry, Biggerstaff, Michael I., Betten, Daniel P., Alford, A. Addison
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4837-4222a0b3f4ecb40e5c207f4864c15dfed2cb2d263c24b98f64698572e01618c83
cites cdi_FETCH-LOGICAL-c4837-4222a0b3f4ecb40e5c207f4864c15dfed2cb2d263c24b98f64698572e01618c83
container_end_page 7614
container_issue 14
container_start_page 7594
container_title Journal of geophysical research. Atmospheres
container_volume 123
creator Bela, Megan M.
Barth, Mary C.
Toon, Owen Brian
Fried, Alan
Ziegler, Conrad
Cummings, Kristin A.
Li, Yunyao
Pickering, Kenneth E.
Homeyer, Cameron R.
Morrison, Hugh
Yang, Qing
Mecikalski, Retha M.
Carey, Larry
Biggerstaff, Michael I.
Betten, Daniel P.
Alford, A. Addison
description Deep convective transport of gaseous precursors to ozone (O3) and aerosols to the upper troposphere is affected by liquid phase and mixed‐phase scavenging, entrainment of free tropospheric air and aqueous chemistry. The contributions of these processes are examined using aircraft measurements obtained in storm inflow and outflow during the 2012 Deep Convective Clouds and Chemistry (DC3) experiment combined with high‐resolution (dx≤3 km) WRF‐Chem simulations of a severe storm, an air mass storm, and a mesoscale convective system (MCS). The simulation results for the MCS suggest that formaldehyde (CH2O) is not retained in ice when cloud water freezes, in agreement with previous studies of the severe storm. By analyzing WRF‐Chem trajectories, the effects of scavenging, entrainment, and aqueous chemistry on outflow mixing ratios of CH2O, methyl hydroperoxide (CH3OOH), and hydrogen peroxide (H2O2) are quantified. Liquid phase microphysical scavenging was the dominant process reducing CH2O and H2O2 outflow mixing ratios in all three storms. Aqueous chemistry did not significantly affect outflow mixing ratios of all three species. In the severe storm and MCS, the higher than expected reductions in CH3OOH mixing ratios in the storm cores were primarily due to entrainment of low‐background CH3OOH. In the air mass storm, lower CH3OOH and H2O2 scavenging efficiencies (SEs) than in the MCS were partly due to entrainment of higher background CH3OOH and H2O2. Overestimated rain and hail production in WRF‐Chem reduces the confidence in ice retention fraction values determined for the peroxides and CH2O. Key Points Methyl hydroperoxide mixing ratios are decreased mainly by entrainment and liquid phase and mixed‐phase scavenging Hydrogen peroxide and formaldehyde mixing ratios affected more by liquid phase scavenging than by entrainment or aqueous chemistry Overestimated rain/hail production in WRF‐Chem reduces confidence in ice retention fraction values determined for peroxides and formaldehyde
doi_str_mv 10.1029/2018JD028271
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7427629</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2434754727</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4837-4222a0b3f4ecb40e5c207f4864c15dfed2cb2d263c24b98f64698572e01618c83</originalsourceid><addsrcrecordid>eNp9kkFvEzEQhVcIRKvSG2dkwYVDAt5ZZ-29IFVJWqgqBVEqcbO83tnE1cZObW9Kfg1_FadbosIBX2zZn-fNe5ose53TDzmF6iPQXFzOKAjg-bPsGPKyGouqKp8fzvzHUXYawi1NS9CCTdjL7KgAQaGsxHH2a962qGMgriXXWm3RLo1djsjcRq-MXaONI6JsQ87uenR9INMVrk2IfkecJV_Ru5-mwfCAnDu_Vl2Dq12DxFgyQ9yQqbPbJGC2SBZ9bDt3TxZb9CSukExxr9I9fL52fbpSIZIbayKmi6gihlfZi1Z1AU8f95Ps5nz-ffp5fLW4-DI9uxprJgo-ZgCgaF20DHXNKE40UN4yUTKdT5oWG9A1NFAWGlhdibZkyf2EA9K8zIUWxUn2aai76es1NnroTG68WSu_k04Z-feLNSu5dFvJGfASqlTg7VDAhWhk0MmDXmlnbTIvc1YVSTFB7x9VvEt5hihTlhq7Ttl9uBJYwfiEceAJffcPeut6b1MGEmhFy8RUZaJGA6W9C8Fje-g4p3I_IfLphCT8zVOXB_jPPCSgGIB70-Huv8Xk5cW3WeqV8uI3BUnGLQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2090672796</pqid></control><display><type>article</type><title>Effects of Scavenging, Entrainment, and Aqueous Chemistry on Peroxides and Formaldehyde in Deep Convective Outflow Over the Central and Southeast United States</title><source>Wiley</source><source>Alma/SFX Local Collection</source><creator>Bela, Megan M. ; Barth, Mary C. ; Toon, Owen Brian ; Fried, Alan ; Ziegler, Conrad ; Cummings, Kristin A. ; Li, Yunyao ; Pickering, Kenneth E. ; Homeyer, Cameron R. ; Morrison, Hugh ; Yang, Qing ; Mecikalski, Retha M. ; Carey, Larry ; Biggerstaff, Michael I. ; Betten, Daniel P. ; Alford, A. Addison</creator><creatorcontrib>Bela, Megan M. ; Barth, Mary C. ; Toon, Owen Brian ; Fried, Alan ; Ziegler, Conrad ; Cummings, Kristin A. ; Li, Yunyao ; Pickering, Kenneth E. ; Homeyer, Cameron R. ; Morrison, Hugh ; Yang, Qing ; Mecikalski, Retha M. ; Carey, Larry ; Biggerstaff, Michael I. ; Betten, Daniel P. ; Alford, A. Addison</creatorcontrib><description>Deep convective transport of gaseous precursors to ozone (O3) and aerosols to the upper troposphere is affected by liquid phase and mixed‐phase scavenging, entrainment of free tropospheric air and aqueous chemistry. The contributions of these processes are examined using aircraft measurements obtained in storm inflow and outflow during the 2012 Deep Convective Clouds and Chemistry (DC3) experiment combined with high‐resolution (dx≤3 km) WRF‐Chem simulations of a severe storm, an air mass storm, and a mesoscale convective system (MCS). The simulation results for the MCS suggest that formaldehyde (CH2O) is not retained in ice when cloud water freezes, in agreement with previous studies of the severe storm. By analyzing WRF‐Chem trajectories, the effects of scavenging, entrainment, and aqueous chemistry on outflow mixing ratios of CH2O, methyl hydroperoxide (CH3OOH), and hydrogen peroxide (H2O2) are quantified. Liquid phase microphysical scavenging was the dominant process reducing CH2O and H2O2 outflow mixing ratios in all three storms. Aqueous chemistry did not significantly affect outflow mixing ratios of all three species. In the severe storm and MCS, the higher than expected reductions in CH3OOH mixing ratios in the storm cores were primarily due to entrainment of low‐background CH3OOH. In the air mass storm, lower CH3OOH and H2O2 scavenging efficiencies (SEs) than in the MCS were partly due to entrainment of higher background CH3OOH and H2O2. Overestimated rain and hail production in WRF‐Chem reduces the confidence in ice retention fraction values determined for the peroxides and CH2O. Key Points Methyl hydroperoxide mixing ratios are decreased mainly by entrainment and liquid phase and mixed‐phase scavenging Hydrogen peroxide and formaldehyde mixing ratios affected more by liquid phase scavenging than by entrainment or aqueous chemistry Overestimated rain/hail production in WRF‐Chem reduces confidence in ice retention fraction values determined for peroxides and formaldehyde</description><identifier>ISSN: 2169-897X</identifier><identifier>EISSN: 2169-8996</identifier><identifier>DOI: 10.1029/2018JD028271</identifier><identifier>PMID: 32802698</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Air masses ; Aqueous chemistry ; Atmospheric chemistry ; Chemistry ; Cloud water ; Convective transport ; deep convection ; Entrainment ; Formaldehyde ; Geophysics ; Hail ; Hydrogen ; Hydrogen peroxide ; Inflow ; Liquid phases ; Mesoscale convective systems ; Methyl hydroperoxide in atmosphere ; Mixing ratio ; Organic chemistry ; Outflow ; Ozone ; Peroxides ; Scavenging ; Storms ; Trajectory analysis ; Troposphere ; Tropospheric ozone ; Upper troposphere</subject><ispartof>Journal of geophysical research. Atmospheres, 2018-07, Vol.123 (14), p.7594-7614</ispartof><rights>2018. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4837-4222a0b3f4ecb40e5c207f4864c15dfed2cb2d263c24b98f64698572e01618c83</citedby><cites>FETCH-LOGICAL-c4837-4222a0b3f4ecb40e5c207f4864c15dfed2cb2d263c24b98f64698572e01618c83</cites><orcidid>0000-0003-3873-3552 ; 0000-0003-2067-5999 ; 0000-0003-4340-5289 ; 0000-0003-2255-877X ; 0000-0001-7598-3783 ; 0000-0003-1123-0322 ; 0000-0001-8480-9787 ; 0000-0002-1394-3062 ; 0000-0002-3998-9990 ; 0000-0002-4883-6670 ; 0000-0002-6690-784X ; 0000-0001-7894-6160 ; 0000-0002-3073-3227 ; 0000-0002-9252-0286 ; 0000-0002-5230-3527 ; 0000000248836670 ; 0000000230733227 ; 0000000213943062 ; 000000032255877X ; 000000026690784X ; 0000000239989990 ; 0000000184809787 ; 0000000292520286 ; 0000000338733552 ; 0000000343405289 ; 0000000311230322 ; 0000000178946160 ; 0000000175983783 ; 0000000320675999 ; 0000000252303527</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32802698$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1493469$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Bela, Megan M.</creatorcontrib><creatorcontrib>Barth, Mary C.</creatorcontrib><creatorcontrib>Toon, Owen Brian</creatorcontrib><creatorcontrib>Fried, Alan</creatorcontrib><creatorcontrib>Ziegler, Conrad</creatorcontrib><creatorcontrib>Cummings, Kristin A.</creatorcontrib><creatorcontrib>Li, Yunyao</creatorcontrib><creatorcontrib>Pickering, Kenneth E.</creatorcontrib><creatorcontrib>Homeyer, Cameron R.</creatorcontrib><creatorcontrib>Morrison, Hugh</creatorcontrib><creatorcontrib>Yang, Qing</creatorcontrib><creatorcontrib>Mecikalski, Retha M.</creatorcontrib><creatorcontrib>Carey, Larry</creatorcontrib><creatorcontrib>Biggerstaff, Michael I.</creatorcontrib><creatorcontrib>Betten, Daniel P.</creatorcontrib><creatorcontrib>Alford, A. Addison</creatorcontrib><title>Effects of Scavenging, Entrainment, and Aqueous Chemistry on Peroxides and Formaldehyde in Deep Convective Outflow Over the Central and Southeast United States</title><title>Journal of geophysical research. Atmospheres</title><addtitle>J Geophys Res Atmos</addtitle><description>Deep convective transport of gaseous precursors to ozone (O3) and aerosols to the upper troposphere is affected by liquid phase and mixed‐phase scavenging, entrainment of free tropospheric air and aqueous chemistry. The contributions of these processes are examined using aircraft measurements obtained in storm inflow and outflow during the 2012 Deep Convective Clouds and Chemistry (DC3) experiment combined with high‐resolution (dx≤3 km) WRF‐Chem simulations of a severe storm, an air mass storm, and a mesoscale convective system (MCS). The simulation results for the MCS suggest that formaldehyde (CH2O) is not retained in ice when cloud water freezes, in agreement with previous studies of the severe storm. By analyzing WRF‐Chem trajectories, the effects of scavenging, entrainment, and aqueous chemistry on outflow mixing ratios of CH2O, methyl hydroperoxide (CH3OOH), and hydrogen peroxide (H2O2) are quantified. Liquid phase microphysical scavenging was the dominant process reducing CH2O and H2O2 outflow mixing ratios in all three storms. Aqueous chemistry did not significantly affect outflow mixing ratios of all three species. In the severe storm and MCS, the higher than expected reductions in CH3OOH mixing ratios in the storm cores were primarily due to entrainment of low‐background CH3OOH. In the air mass storm, lower CH3OOH and H2O2 scavenging efficiencies (SEs) than in the MCS were partly due to entrainment of higher background CH3OOH and H2O2. Overestimated rain and hail production in WRF‐Chem reduces the confidence in ice retention fraction values determined for the peroxides and CH2O. Key Points Methyl hydroperoxide mixing ratios are decreased mainly by entrainment and liquid phase and mixed‐phase scavenging Hydrogen peroxide and formaldehyde mixing ratios affected more by liquid phase scavenging than by entrainment or aqueous chemistry Overestimated rain/hail production in WRF‐Chem reduces confidence in ice retention fraction values determined for peroxides and formaldehyde</description><subject>Air masses</subject><subject>Aqueous chemistry</subject><subject>Atmospheric chemistry</subject><subject>Chemistry</subject><subject>Cloud water</subject><subject>Convective transport</subject><subject>deep convection</subject><subject>Entrainment</subject><subject>Formaldehyde</subject><subject>Geophysics</subject><subject>Hail</subject><subject>Hydrogen</subject><subject>Hydrogen peroxide</subject><subject>Inflow</subject><subject>Liquid phases</subject><subject>Mesoscale convective systems</subject><subject>Methyl hydroperoxide in atmosphere</subject><subject>Mixing ratio</subject><subject>Organic chemistry</subject><subject>Outflow</subject><subject>Ozone</subject><subject>Peroxides</subject><subject>Scavenging</subject><subject>Storms</subject><subject>Trajectory analysis</subject><subject>Troposphere</subject><subject>Tropospheric ozone</subject><subject>Upper troposphere</subject><issn>2169-897X</issn><issn>2169-8996</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kkFvEzEQhVcIRKvSG2dkwYVDAt5ZZ-29IFVJWqgqBVEqcbO83tnE1cZObW9Kfg1_FadbosIBX2zZn-fNe5ose53TDzmF6iPQXFzOKAjg-bPsGPKyGouqKp8fzvzHUXYawi1NS9CCTdjL7KgAQaGsxHH2a962qGMgriXXWm3RLo1djsjcRq-MXaONI6JsQ87uenR9INMVrk2IfkecJV_Ru5-mwfCAnDu_Vl2Dq12DxFgyQ9yQqbPbJGC2SBZ9bDt3TxZb9CSukExxr9I9fL52fbpSIZIbayKmi6gihlfZi1Z1AU8f95Ps5nz-ffp5fLW4-DI9uxprJgo-ZgCgaF20DHXNKE40UN4yUTKdT5oWG9A1NFAWGlhdibZkyf2EA9K8zIUWxUn2aai76es1NnroTG68WSu_k04Z-feLNSu5dFvJGfASqlTg7VDAhWhk0MmDXmlnbTIvc1YVSTFB7x9VvEt5hihTlhq7Ttl9uBJYwfiEceAJffcPeut6b1MGEmhFy8RUZaJGA6W9C8Fje-g4p3I_IfLphCT8zVOXB_jPPCSgGIB70-Huv8Xk5cW3WeqV8uI3BUnGLQ</recordid><startdate>20180727</startdate><enddate>20180727</enddate><creator>Bela, Megan M.</creator><creator>Barth, Mary C.</creator><creator>Toon, Owen Brian</creator><creator>Fried, Alan</creator><creator>Ziegler, Conrad</creator><creator>Cummings, Kristin A.</creator><creator>Li, Yunyao</creator><creator>Pickering, Kenneth E.</creator><creator>Homeyer, Cameron R.</creator><creator>Morrison, Hugh</creator><creator>Yang, Qing</creator><creator>Mecikalski, Retha M.</creator><creator>Carey, Larry</creator><creator>Biggerstaff, Michael I.</creator><creator>Betten, Daniel P.</creator><creator>Alford, A. Addison</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union (AGU)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3873-3552</orcidid><orcidid>https://orcid.org/0000-0003-2067-5999</orcidid><orcidid>https://orcid.org/0000-0003-4340-5289</orcidid><orcidid>https://orcid.org/0000-0003-2255-877X</orcidid><orcidid>https://orcid.org/0000-0001-7598-3783</orcidid><orcidid>https://orcid.org/0000-0003-1123-0322</orcidid><orcidid>https://orcid.org/0000-0001-8480-9787</orcidid><orcidid>https://orcid.org/0000-0002-1394-3062</orcidid><orcidid>https://orcid.org/0000-0002-3998-9990</orcidid><orcidid>https://orcid.org/0000-0002-4883-6670</orcidid><orcidid>https://orcid.org/0000-0002-6690-784X</orcidid><orcidid>https://orcid.org/0000-0001-7894-6160</orcidid><orcidid>https://orcid.org/0000-0002-3073-3227</orcidid><orcidid>https://orcid.org/0000-0002-9252-0286</orcidid><orcidid>https://orcid.org/0000-0002-5230-3527</orcidid><orcidid>https://orcid.org/0000000248836670</orcidid><orcidid>https://orcid.org/0000000230733227</orcidid><orcidid>https://orcid.org/0000000213943062</orcidid><orcidid>https://orcid.org/000000032255877X</orcidid><orcidid>https://orcid.org/000000026690784X</orcidid><orcidid>https://orcid.org/0000000239989990</orcidid><orcidid>https://orcid.org/0000000184809787</orcidid><orcidid>https://orcid.org/0000000292520286</orcidid><orcidid>https://orcid.org/0000000338733552</orcidid><orcidid>https://orcid.org/0000000343405289</orcidid><orcidid>https://orcid.org/0000000311230322</orcidid><orcidid>https://orcid.org/0000000178946160</orcidid><orcidid>https://orcid.org/0000000175983783</orcidid><orcidid>https://orcid.org/0000000320675999</orcidid><orcidid>https://orcid.org/0000000252303527</orcidid></search><sort><creationdate>20180727</creationdate><title>Effects of Scavenging, Entrainment, and Aqueous Chemistry on Peroxides and Formaldehyde in Deep Convective Outflow Over the Central and Southeast United States</title><author>Bela, Megan M. ; Barth, Mary C. ; Toon, Owen Brian ; Fried, Alan ; Ziegler, Conrad ; Cummings, Kristin A. ; Li, Yunyao ; Pickering, Kenneth E. ; Homeyer, Cameron R. ; Morrison, Hugh ; Yang, Qing ; Mecikalski, Retha M. ; Carey, Larry ; Biggerstaff, Michael I. ; Betten, Daniel P. ; Alford, A. Addison</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4837-4222a0b3f4ecb40e5c207f4864c15dfed2cb2d263c24b98f64698572e01618c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Air masses</topic><topic>Aqueous chemistry</topic><topic>Atmospheric chemistry</topic><topic>Chemistry</topic><topic>Cloud water</topic><topic>Convective transport</topic><topic>deep convection</topic><topic>Entrainment</topic><topic>Formaldehyde</topic><topic>Geophysics</topic><topic>Hail</topic><topic>Hydrogen</topic><topic>Hydrogen peroxide</topic><topic>Inflow</topic><topic>Liquid phases</topic><topic>Mesoscale convective systems</topic><topic>Methyl hydroperoxide in atmosphere</topic><topic>Mixing ratio</topic><topic>Organic chemistry</topic><topic>Outflow</topic><topic>Ozone</topic><topic>Peroxides</topic><topic>Scavenging</topic><topic>Storms</topic><topic>Trajectory analysis</topic><topic>Troposphere</topic><topic>Tropospheric ozone</topic><topic>Upper troposphere</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bela, Megan M.</creatorcontrib><creatorcontrib>Barth, Mary C.</creatorcontrib><creatorcontrib>Toon, Owen Brian</creatorcontrib><creatorcontrib>Fried, Alan</creatorcontrib><creatorcontrib>Ziegler, Conrad</creatorcontrib><creatorcontrib>Cummings, Kristin A.</creatorcontrib><creatorcontrib>Li, Yunyao</creatorcontrib><creatorcontrib>Pickering, Kenneth E.</creatorcontrib><creatorcontrib>Homeyer, Cameron R.</creatorcontrib><creatorcontrib>Morrison, Hugh</creatorcontrib><creatorcontrib>Yang, Qing</creatorcontrib><creatorcontrib>Mecikalski, Retha M.</creatorcontrib><creatorcontrib>Carey, Larry</creatorcontrib><creatorcontrib>Biggerstaff, Michael I.</creatorcontrib><creatorcontrib>Betten, Daniel P.</creatorcontrib><creatorcontrib>Alford, A. Addison</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of geophysical research. Atmospheres</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bela, Megan M.</au><au>Barth, Mary C.</au><au>Toon, Owen Brian</au><au>Fried, Alan</au><au>Ziegler, Conrad</au><au>Cummings, Kristin A.</au><au>Li, Yunyao</au><au>Pickering, Kenneth E.</au><au>Homeyer, Cameron R.</au><au>Morrison, Hugh</au><au>Yang, Qing</au><au>Mecikalski, Retha M.</au><au>Carey, Larry</au><au>Biggerstaff, Michael I.</au><au>Betten, Daniel P.</au><au>Alford, A. Addison</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of Scavenging, Entrainment, and Aqueous Chemistry on Peroxides and Formaldehyde in Deep Convective Outflow Over the Central and Southeast United States</atitle><jtitle>Journal of geophysical research. Atmospheres</jtitle><addtitle>J Geophys Res Atmos</addtitle><date>2018-07-27</date><risdate>2018</risdate><volume>123</volume><issue>14</issue><spage>7594</spage><epage>7614</epage><pages>7594-7614</pages><issn>2169-897X</issn><eissn>2169-8996</eissn><abstract>Deep convective transport of gaseous precursors to ozone (O3) and aerosols to the upper troposphere is affected by liquid phase and mixed‐phase scavenging, entrainment of free tropospheric air and aqueous chemistry. The contributions of these processes are examined using aircraft measurements obtained in storm inflow and outflow during the 2012 Deep Convective Clouds and Chemistry (DC3) experiment combined with high‐resolution (dx≤3 km) WRF‐Chem simulations of a severe storm, an air mass storm, and a mesoscale convective system (MCS). The simulation results for the MCS suggest that formaldehyde (CH2O) is not retained in ice when cloud water freezes, in agreement with previous studies of the severe storm. By analyzing WRF‐Chem trajectories, the effects of scavenging, entrainment, and aqueous chemistry on outflow mixing ratios of CH2O, methyl hydroperoxide (CH3OOH), and hydrogen peroxide (H2O2) are quantified. Liquid phase microphysical scavenging was the dominant process reducing CH2O and H2O2 outflow mixing ratios in all three storms. Aqueous chemistry did not significantly affect outflow mixing ratios of all three species. In the severe storm and MCS, the higher than expected reductions in CH3OOH mixing ratios in the storm cores were primarily due to entrainment of low‐background CH3OOH. In the air mass storm, lower CH3OOH and H2O2 scavenging efficiencies (SEs) than in the MCS were partly due to entrainment of higher background CH3OOH and H2O2. Overestimated rain and hail production in WRF‐Chem reduces the confidence in ice retention fraction values determined for the peroxides and CH2O. Key Points Methyl hydroperoxide mixing ratios are decreased mainly by entrainment and liquid phase and mixed‐phase scavenging Hydrogen peroxide and formaldehyde mixing ratios affected more by liquid phase scavenging than by entrainment or aqueous chemistry Overestimated rain/hail production in WRF‐Chem reduces confidence in ice retention fraction values determined for peroxides and formaldehyde</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>32802698</pmid><doi>10.1029/2018JD028271</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0003-3873-3552</orcidid><orcidid>https://orcid.org/0000-0003-2067-5999</orcidid><orcidid>https://orcid.org/0000-0003-4340-5289</orcidid><orcidid>https://orcid.org/0000-0003-2255-877X</orcidid><orcidid>https://orcid.org/0000-0001-7598-3783</orcidid><orcidid>https://orcid.org/0000-0003-1123-0322</orcidid><orcidid>https://orcid.org/0000-0001-8480-9787</orcidid><orcidid>https://orcid.org/0000-0002-1394-3062</orcidid><orcidid>https://orcid.org/0000-0002-3998-9990</orcidid><orcidid>https://orcid.org/0000-0002-4883-6670</orcidid><orcidid>https://orcid.org/0000-0002-6690-784X</orcidid><orcidid>https://orcid.org/0000-0001-7894-6160</orcidid><orcidid>https://orcid.org/0000-0002-3073-3227</orcidid><orcidid>https://orcid.org/0000-0002-9252-0286</orcidid><orcidid>https://orcid.org/0000-0002-5230-3527</orcidid><orcidid>https://orcid.org/0000000248836670</orcidid><orcidid>https://orcid.org/0000000230733227</orcidid><orcidid>https://orcid.org/0000000213943062</orcidid><orcidid>https://orcid.org/000000032255877X</orcidid><orcidid>https://orcid.org/000000026690784X</orcidid><orcidid>https://orcid.org/0000000239989990</orcidid><orcidid>https://orcid.org/0000000184809787</orcidid><orcidid>https://orcid.org/0000000292520286</orcidid><orcidid>https://orcid.org/0000000338733552</orcidid><orcidid>https://orcid.org/0000000343405289</orcidid><orcidid>https://orcid.org/0000000311230322</orcidid><orcidid>https://orcid.org/0000000178946160</orcidid><orcidid>https://orcid.org/0000000175983783</orcidid><orcidid>https://orcid.org/0000000320675999</orcidid><orcidid>https://orcid.org/0000000252303527</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-897X
ispartof Journal of geophysical research. Atmospheres, 2018-07, Vol.123 (14), p.7594-7614
issn 2169-897X
2169-8996
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7427629
source Wiley; Alma/SFX Local Collection
subjects Air masses
Aqueous chemistry
Atmospheric chemistry
Chemistry
Cloud water
Convective transport
deep convection
Entrainment
Formaldehyde
Geophysics
Hail
Hydrogen
Hydrogen peroxide
Inflow
Liquid phases
Mesoscale convective systems
Methyl hydroperoxide in atmosphere
Mixing ratio
Organic chemistry
Outflow
Ozone
Peroxides
Scavenging
Storms
Trajectory analysis
Troposphere
Tropospheric ozone
Upper troposphere
title Effects of Scavenging, Entrainment, and Aqueous Chemistry on Peroxides and Formaldehyde in Deep Convective Outflow Over the Central and Southeast United States
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T21%3A02%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20Scavenging,%20Entrainment,%20and%20Aqueous%20Chemistry%20on%20Peroxides%20and%20Formaldehyde%20in%20Deep%20Convective%20Outflow%20Over%20the%20Central%20and%20Southeast%20United%20States&rft.jtitle=Journal%20of%20geophysical%20research.%20Atmospheres&rft.au=Bela,%20Megan%20M.&rft.date=2018-07-27&rft.volume=123&rft.issue=14&rft.spage=7594&rft.epage=7614&rft.pages=7594-7614&rft.issn=2169-897X&rft.eissn=2169-8996&rft_id=info:doi/10.1029/2018JD028271&rft_dat=%3Cproquest_pubme%3E2434754727%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4837-4222a0b3f4ecb40e5c207f4864c15dfed2cb2d263c24b98f64698572e01618c83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2090672796&rft_id=info:pmid/32802698&rfr_iscdi=true