Loading…
Effects of Scavenging, Entrainment, and Aqueous Chemistry on Peroxides and Formaldehyde in Deep Convective Outflow Over the Central and Southeast United States
Deep convective transport of gaseous precursors to ozone (O3) and aerosols to the upper troposphere is affected by liquid phase and mixed‐phase scavenging, entrainment of free tropospheric air and aqueous chemistry. The contributions of these processes are examined using aircraft measurements obtain...
Saved in:
Published in: | Journal of geophysical research. Atmospheres 2018-07, Vol.123 (14), p.7594-7614 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4837-4222a0b3f4ecb40e5c207f4864c15dfed2cb2d263c24b98f64698572e01618c83 |
---|---|
cites | cdi_FETCH-LOGICAL-c4837-4222a0b3f4ecb40e5c207f4864c15dfed2cb2d263c24b98f64698572e01618c83 |
container_end_page | 7614 |
container_issue | 14 |
container_start_page | 7594 |
container_title | Journal of geophysical research. Atmospheres |
container_volume | 123 |
creator | Bela, Megan M. Barth, Mary C. Toon, Owen Brian Fried, Alan Ziegler, Conrad Cummings, Kristin A. Li, Yunyao Pickering, Kenneth E. Homeyer, Cameron R. Morrison, Hugh Yang, Qing Mecikalski, Retha M. Carey, Larry Biggerstaff, Michael I. Betten, Daniel P. Alford, A. Addison |
description | Deep convective transport of gaseous precursors to ozone (O3) and aerosols to the upper troposphere is affected by liquid phase and mixed‐phase scavenging, entrainment of free tropospheric air and aqueous chemistry. The contributions of these processes are examined using aircraft measurements obtained in storm inflow and outflow during the 2012 Deep Convective Clouds and Chemistry (DC3) experiment combined with high‐resolution (dx≤3 km) WRF‐Chem simulations of a severe storm, an air mass storm, and a mesoscale convective system (MCS). The simulation results for the MCS suggest that formaldehyde (CH2O) is not retained in ice when cloud water freezes, in agreement with previous studies of the severe storm. By analyzing WRF‐Chem trajectories, the effects of scavenging, entrainment, and aqueous chemistry on outflow mixing ratios of CH2O, methyl hydroperoxide (CH3OOH), and hydrogen peroxide (H2O2) are quantified. Liquid phase microphysical scavenging was the dominant process reducing CH2O and H2O2 outflow mixing ratios in all three storms. Aqueous chemistry did not significantly affect outflow mixing ratios of all three species. In the severe storm and MCS, the higher than expected reductions in CH3OOH mixing ratios in the storm cores were primarily due to entrainment of low‐background CH3OOH. In the air mass storm, lower CH3OOH and H2O2 scavenging efficiencies (SEs) than in the MCS were partly due to entrainment of higher background CH3OOH and H2O2. Overestimated rain and hail production in WRF‐Chem reduces the confidence in ice retention fraction values determined for the peroxides and CH2O.
Key Points
Methyl hydroperoxide mixing ratios are decreased mainly by entrainment and liquid phase and mixed‐phase scavenging
Hydrogen peroxide and formaldehyde mixing ratios affected more by liquid phase scavenging than by entrainment or aqueous chemistry
Overestimated rain/hail production in WRF‐Chem reduces confidence in ice retention fraction values determined for peroxides and formaldehyde |
doi_str_mv | 10.1029/2018JD028271 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7427629</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2434754727</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4837-4222a0b3f4ecb40e5c207f4864c15dfed2cb2d263c24b98f64698572e01618c83</originalsourceid><addsrcrecordid>eNp9kkFvEzEQhVcIRKvSG2dkwYVDAt5ZZ-29IFVJWqgqBVEqcbO83tnE1cZObW9Kfg1_FadbosIBX2zZn-fNe5ose53TDzmF6iPQXFzOKAjg-bPsGPKyGouqKp8fzvzHUXYawi1NS9CCTdjL7KgAQaGsxHH2a962qGMgriXXWm3RLo1djsjcRq-MXaONI6JsQ87uenR9INMVrk2IfkecJV_Ru5-mwfCAnDu_Vl2Dq12DxFgyQ9yQqbPbJGC2SBZ9bDt3TxZb9CSukExxr9I9fL52fbpSIZIbayKmi6gihlfZi1Z1AU8f95Ps5nz-ffp5fLW4-DI9uxprJgo-ZgCgaF20DHXNKE40UN4yUTKdT5oWG9A1NFAWGlhdibZkyf2EA9K8zIUWxUn2aai76es1NnroTG68WSu_k04Z-feLNSu5dFvJGfASqlTg7VDAhWhk0MmDXmlnbTIvc1YVSTFB7x9VvEt5hihTlhq7Ttl9uBJYwfiEceAJffcPeut6b1MGEmhFy8RUZaJGA6W9C8Fje-g4p3I_IfLphCT8zVOXB_jPPCSgGIB70-Huv8Xk5cW3WeqV8uI3BUnGLQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2090672796</pqid></control><display><type>article</type><title>Effects of Scavenging, Entrainment, and Aqueous Chemistry on Peroxides and Formaldehyde in Deep Convective Outflow Over the Central and Southeast United States</title><source>Wiley</source><source>Alma/SFX Local Collection</source><creator>Bela, Megan M. ; Barth, Mary C. ; Toon, Owen Brian ; Fried, Alan ; Ziegler, Conrad ; Cummings, Kristin A. ; Li, Yunyao ; Pickering, Kenneth E. ; Homeyer, Cameron R. ; Morrison, Hugh ; Yang, Qing ; Mecikalski, Retha M. ; Carey, Larry ; Biggerstaff, Michael I. ; Betten, Daniel P. ; Alford, A. Addison</creator><creatorcontrib>Bela, Megan M. ; Barth, Mary C. ; Toon, Owen Brian ; Fried, Alan ; Ziegler, Conrad ; Cummings, Kristin A. ; Li, Yunyao ; Pickering, Kenneth E. ; Homeyer, Cameron R. ; Morrison, Hugh ; Yang, Qing ; Mecikalski, Retha M. ; Carey, Larry ; Biggerstaff, Michael I. ; Betten, Daniel P. ; Alford, A. Addison</creatorcontrib><description>Deep convective transport of gaseous precursors to ozone (O3) and aerosols to the upper troposphere is affected by liquid phase and mixed‐phase scavenging, entrainment of free tropospheric air and aqueous chemistry. The contributions of these processes are examined using aircraft measurements obtained in storm inflow and outflow during the 2012 Deep Convective Clouds and Chemistry (DC3) experiment combined with high‐resolution (dx≤3 km) WRF‐Chem simulations of a severe storm, an air mass storm, and a mesoscale convective system (MCS). The simulation results for the MCS suggest that formaldehyde (CH2O) is not retained in ice when cloud water freezes, in agreement with previous studies of the severe storm. By analyzing WRF‐Chem trajectories, the effects of scavenging, entrainment, and aqueous chemistry on outflow mixing ratios of CH2O, methyl hydroperoxide (CH3OOH), and hydrogen peroxide (H2O2) are quantified. Liquid phase microphysical scavenging was the dominant process reducing CH2O and H2O2 outflow mixing ratios in all three storms. Aqueous chemistry did not significantly affect outflow mixing ratios of all three species. In the severe storm and MCS, the higher than expected reductions in CH3OOH mixing ratios in the storm cores were primarily due to entrainment of low‐background CH3OOH. In the air mass storm, lower CH3OOH and H2O2 scavenging efficiencies (SEs) than in the MCS were partly due to entrainment of higher background CH3OOH and H2O2. Overestimated rain and hail production in WRF‐Chem reduces the confidence in ice retention fraction values determined for the peroxides and CH2O.
Key Points
Methyl hydroperoxide mixing ratios are decreased mainly by entrainment and liquid phase and mixed‐phase scavenging
Hydrogen peroxide and formaldehyde mixing ratios affected more by liquid phase scavenging than by entrainment or aqueous chemistry
Overestimated rain/hail production in WRF‐Chem reduces confidence in ice retention fraction values determined for peroxides and formaldehyde</description><identifier>ISSN: 2169-897X</identifier><identifier>EISSN: 2169-8996</identifier><identifier>DOI: 10.1029/2018JD028271</identifier><identifier>PMID: 32802698</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Air masses ; Aqueous chemistry ; Atmospheric chemistry ; Chemistry ; Cloud water ; Convective transport ; deep convection ; Entrainment ; Formaldehyde ; Geophysics ; Hail ; Hydrogen ; Hydrogen peroxide ; Inflow ; Liquid phases ; Mesoscale convective systems ; Methyl hydroperoxide in atmosphere ; Mixing ratio ; Organic chemistry ; Outflow ; Ozone ; Peroxides ; Scavenging ; Storms ; Trajectory analysis ; Troposphere ; Tropospheric ozone ; Upper troposphere</subject><ispartof>Journal of geophysical research. Atmospheres, 2018-07, Vol.123 (14), p.7594-7614</ispartof><rights>2018. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4837-4222a0b3f4ecb40e5c207f4864c15dfed2cb2d263c24b98f64698572e01618c83</citedby><cites>FETCH-LOGICAL-c4837-4222a0b3f4ecb40e5c207f4864c15dfed2cb2d263c24b98f64698572e01618c83</cites><orcidid>0000-0003-3873-3552 ; 0000-0003-2067-5999 ; 0000-0003-4340-5289 ; 0000-0003-2255-877X ; 0000-0001-7598-3783 ; 0000-0003-1123-0322 ; 0000-0001-8480-9787 ; 0000-0002-1394-3062 ; 0000-0002-3998-9990 ; 0000-0002-4883-6670 ; 0000-0002-6690-784X ; 0000-0001-7894-6160 ; 0000-0002-3073-3227 ; 0000-0002-9252-0286 ; 0000-0002-5230-3527 ; 0000000248836670 ; 0000000230733227 ; 0000000213943062 ; 000000032255877X ; 000000026690784X ; 0000000239989990 ; 0000000184809787 ; 0000000292520286 ; 0000000338733552 ; 0000000343405289 ; 0000000311230322 ; 0000000178946160 ; 0000000175983783 ; 0000000320675999 ; 0000000252303527</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32802698$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1493469$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Bela, Megan M.</creatorcontrib><creatorcontrib>Barth, Mary C.</creatorcontrib><creatorcontrib>Toon, Owen Brian</creatorcontrib><creatorcontrib>Fried, Alan</creatorcontrib><creatorcontrib>Ziegler, Conrad</creatorcontrib><creatorcontrib>Cummings, Kristin A.</creatorcontrib><creatorcontrib>Li, Yunyao</creatorcontrib><creatorcontrib>Pickering, Kenneth E.</creatorcontrib><creatorcontrib>Homeyer, Cameron R.</creatorcontrib><creatorcontrib>Morrison, Hugh</creatorcontrib><creatorcontrib>Yang, Qing</creatorcontrib><creatorcontrib>Mecikalski, Retha M.</creatorcontrib><creatorcontrib>Carey, Larry</creatorcontrib><creatorcontrib>Biggerstaff, Michael I.</creatorcontrib><creatorcontrib>Betten, Daniel P.</creatorcontrib><creatorcontrib>Alford, A. Addison</creatorcontrib><title>Effects of Scavenging, Entrainment, and Aqueous Chemistry on Peroxides and Formaldehyde in Deep Convective Outflow Over the Central and Southeast United States</title><title>Journal of geophysical research. Atmospheres</title><addtitle>J Geophys Res Atmos</addtitle><description>Deep convective transport of gaseous precursors to ozone (O3) and aerosols to the upper troposphere is affected by liquid phase and mixed‐phase scavenging, entrainment of free tropospheric air and aqueous chemistry. The contributions of these processes are examined using aircraft measurements obtained in storm inflow and outflow during the 2012 Deep Convective Clouds and Chemistry (DC3) experiment combined with high‐resolution (dx≤3 km) WRF‐Chem simulations of a severe storm, an air mass storm, and a mesoscale convective system (MCS). The simulation results for the MCS suggest that formaldehyde (CH2O) is not retained in ice when cloud water freezes, in agreement with previous studies of the severe storm. By analyzing WRF‐Chem trajectories, the effects of scavenging, entrainment, and aqueous chemistry on outflow mixing ratios of CH2O, methyl hydroperoxide (CH3OOH), and hydrogen peroxide (H2O2) are quantified. Liquid phase microphysical scavenging was the dominant process reducing CH2O and H2O2 outflow mixing ratios in all three storms. Aqueous chemistry did not significantly affect outflow mixing ratios of all three species. In the severe storm and MCS, the higher than expected reductions in CH3OOH mixing ratios in the storm cores were primarily due to entrainment of low‐background CH3OOH. In the air mass storm, lower CH3OOH and H2O2 scavenging efficiencies (SEs) than in the MCS were partly due to entrainment of higher background CH3OOH and H2O2. Overestimated rain and hail production in WRF‐Chem reduces the confidence in ice retention fraction values determined for the peroxides and CH2O.
Key Points
Methyl hydroperoxide mixing ratios are decreased mainly by entrainment and liquid phase and mixed‐phase scavenging
Hydrogen peroxide and formaldehyde mixing ratios affected more by liquid phase scavenging than by entrainment or aqueous chemistry
Overestimated rain/hail production in WRF‐Chem reduces confidence in ice retention fraction values determined for peroxides and formaldehyde</description><subject>Air masses</subject><subject>Aqueous chemistry</subject><subject>Atmospheric chemistry</subject><subject>Chemistry</subject><subject>Cloud water</subject><subject>Convective transport</subject><subject>deep convection</subject><subject>Entrainment</subject><subject>Formaldehyde</subject><subject>Geophysics</subject><subject>Hail</subject><subject>Hydrogen</subject><subject>Hydrogen peroxide</subject><subject>Inflow</subject><subject>Liquid phases</subject><subject>Mesoscale convective systems</subject><subject>Methyl hydroperoxide in atmosphere</subject><subject>Mixing ratio</subject><subject>Organic chemistry</subject><subject>Outflow</subject><subject>Ozone</subject><subject>Peroxides</subject><subject>Scavenging</subject><subject>Storms</subject><subject>Trajectory analysis</subject><subject>Troposphere</subject><subject>Tropospheric ozone</subject><subject>Upper troposphere</subject><issn>2169-897X</issn><issn>2169-8996</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kkFvEzEQhVcIRKvSG2dkwYVDAt5ZZ-29IFVJWqgqBVEqcbO83tnE1cZObW9Kfg1_FadbosIBX2zZn-fNe5ose53TDzmF6iPQXFzOKAjg-bPsGPKyGouqKp8fzvzHUXYawi1NS9CCTdjL7KgAQaGsxHH2a962qGMgriXXWm3RLo1djsjcRq-MXaONI6JsQ87uenR9INMVrk2IfkecJV_Ru5-mwfCAnDu_Vl2Dq12DxFgyQ9yQqbPbJGC2SBZ9bDt3TxZb9CSukExxr9I9fL52fbpSIZIbayKmi6gihlfZi1Z1AU8f95Ps5nz-ffp5fLW4-DI9uxprJgo-ZgCgaF20DHXNKE40UN4yUTKdT5oWG9A1NFAWGlhdibZkyf2EA9K8zIUWxUn2aai76es1NnroTG68WSu_k04Z-feLNSu5dFvJGfASqlTg7VDAhWhk0MmDXmlnbTIvc1YVSTFB7x9VvEt5hihTlhq7Ttl9uBJYwfiEceAJffcPeut6b1MGEmhFy8RUZaJGA6W9C8Fje-g4p3I_IfLphCT8zVOXB_jPPCSgGIB70-Huv8Xk5cW3WeqV8uI3BUnGLQ</recordid><startdate>20180727</startdate><enddate>20180727</enddate><creator>Bela, Megan M.</creator><creator>Barth, Mary C.</creator><creator>Toon, Owen Brian</creator><creator>Fried, Alan</creator><creator>Ziegler, Conrad</creator><creator>Cummings, Kristin A.</creator><creator>Li, Yunyao</creator><creator>Pickering, Kenneth E.</creator><creator>Homeyer, Cameron R.</creator><creator>Morrison, Hugh</creator><creator>Yang, Qing</creator><creator>Mecikalski, Retha M.</creator><creator>Carey, Larry</creator><creator>Biggerstaff, Michael I.</creator><creator>Betten, Daniel P.</creator><creator>Alford, A. Addison</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union (AGU)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3873-3552</orcidid><orcidid>https://orcid.org/0000-0003-2067-5999</orcidid><orcidid>https://orcid.org/0000-0003-4340-5289</orcidid><orcidid>https://orcid.org/0000-0003-2255-877X</orcidid><orcidid>https://orcid.org/0000-0001-7598-3783</orcidid><orcidid>https://orcid.org/0000-0003-1123-0322</orcidid><orcidid>https://orcid.org/0000-0001-8480-9787</orcidid><orcidid>https://orcid.org/0000-0002-1394-3062</orcidid><orcidid>https://orcid.org/0000-0002-3998-9990</orcidid><orcidid>https://orcid.org/0000-0002-4883-6670</orcidid><orcidid>https://orcid.org/0000-0002-6690-784X</orcidid><orcidid>https://orcid.org/0000-0001-7894-6160</orcidid><orcidid>https://orcid.org/0000-0002-3073-3227</orcidid><orcidid>https://orcid.org/0000-0002-9252-0286</orcidid><orcidid>https://orcid.org/0000-0002-5230-3527</orcidid><orcidid>https://orcid.org/0000000248836670</orcidid><orcidid>https://orcid.org/0000000230733227</orcidid><orcidid>https://orcid.org/0000000213943062</orcidid><orcidid>https://orcid.org/000000032255877X</orcidid><orcidid>https://orcid.org/000000026690784X</orcidid><orcidid>https://orcid.org/0000000239989990</orcidid><orcidid>https://orcid.org/0000000184809787</orcidid><orcidid>https://orcid.org/0000000292520286</orcidid><orcidid>https://orcid.org/0000000338733552</orcidid><orcidid>https://orcid.org/0000000343405289</orcidid><orcidid>https://orcid.org/0000000311230322</orcidid><orcidid>https://orcid.org/0000000178946160</orcidid><orcidid>https://orcid.org/0000000175983783</orcidid><orcidid>https://orcid.org/0000000320675999</orcidid><orcidid>https://orcid.org/0000000252303527</orcidid></search><sort><creationdate>20180727</creationdate><title>Effects of Scavenging, Entrainment, and Aqueous Chemistry on Peroxides and Formaldehyde in Deep Convective Outflow Over the Central and Southeast United States</title><author>Bela, Megan M. ; Barth, Mary C. ; Toon, Owen Brian ; Fried, Alan ; Ziegler, Conrad ; Cummings, Kristin A. ; Li, Yunyao ; Pickering, Kenneth E. ; Homeyer, Cameron R. ; Morrison, Hugh ; Yang, Qing ; Mecikalski, Retha M. ; Carey, Larry ; Biggerstaff, Michael I. ; Betten, Daniel P. ; Alford, A. Addison</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4837-4222a0b3f4ecb40e5c207f4864c15dfed2cb2d263c24b98f64698572e01618c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Air masses</topic><topic>Aqueous chemistry</topic><topic>Atmospheric chemistry</topic><topic>Chemistry</topic><topic>Cloud water</topic><topic>Convective transport</topic><topic>deep convection</topic><topic>Entrainment</topic><topic>Formaldehyde</topic><topic>Geophysics</topic><topic>Hail</topic><topic>Hydrogen</topic><topic>Hydrogen peroxide</topic><topic>Inflow</topic><topic>Liquid phases</topic><topic>Mesoscale convective systems</topic><topic>Methyl hydroperoxide in atmosphere</topic><topic>Mixing ratio</topic><topic>Organic chemistry</topic><topic>Outflow</topic><topic>Ozone</topic><topic>Peroxides</topic><topic>Scavenging</topic><topic>Storms</topic><topic>Trajectory analysis</topic><topic>Troposphere</topic><topic>Tropospheric ozone</topic><topic>Upper troposphere</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bela, Megan M.</creatorcontrib><creatorcontrib>Barth, Mary C.</creatorcontrib><creatorcontrib>Toon, Owen Brian</creatorcontrib><creatorcontrib>Fried, Alan</creatorcontrib><creatorcontrib>Ziegler, Conrad</creatorcontrib><creatorcontrib>Cummings, Kristin A.</creatorcontrib><creatorcontrib>Li, Yunyao</creatorcontrib><creatorcontrib>Pickering, Kenneth E.</creatorcontrib><creatorcontrib>Homeyer, Cameron R.</creatorcontrib><creatorcontrib>Morrison, Hugh</creatorcontrib><creatorcontrib>Yang, Qing</creatorcontrib><creatorcontrib>Mecikalski, Retha M.</creatorcontrib><creatorcontrib>Carey, Larry</creatorcontrib><creatorcontrib>Biggerstaff, Michael I.</creatorcontrib><creatorcontrib>Betten, Daniel P.</creatorcontrib><creatorcontrib>Alford, A. Addison</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of geophysical research. Atmospheres</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bela, Megan M.</au><au>Barth, Mary C.</au><au>Toon, Owen Brian</au><au>Fried, Alan</au><au>Ziegler, Conrad</au><au>Cummings, Kristin A.</au><au>Li, Yunyao</au><au>Pickering, Kenneth E.</au><au>Homeyer, Cameron R.</au><au>Morrison, Hugh</au><au>Yang, Qing</au><au>Mecikalski, Retha M.</au><au>Carey, Larry</au><au>Biggerstaff, Michael I.</au><au>Betten, Daniel P.</au><au>Alford, A. Addison</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of Scavenging, Entrainment, and Aqueous Chemistry on Peroxides and Formaldehyde in Deep Convective Outflow Over the Central and Southeast United States</atitle><jtitle>Journal of geophysical research. Atmospheres</jtitle><addtitle>J Geophys Res Atmos</addtitle><date>2018-07-27</date><risdate>2018</risdate><volume>123</volume><issue>14</issue><spage>7594</spage><epage>7614</epage><pages>7594-7614</pages><issn>2169-897X</issn><eissn>2169-8996</eissn><abstract>Deep convective transport of gaseous precursors to ozone (O3) and aerosols to the upper troposphere is affected by liquid phase and mixed‐phase scavenging, entrainment of free tropospheric air and aqueous chemistry. The contributions of these processes are examined using aircraft measurements obtained in storm inflow and outflow during the 2012 Deep Convective Clouds and Chemistry (DC3) experiment combined with high‐resolution (dx≤3 km) WRF‐Chem simulations of a severe storm, an air mass storm, and a mesoscale convective system (MCS). The simulation results for the MCS suggest that formaldehyde (CH2O) is not retained in ice when cloud water freezes, in agreement with previous studies of the severe storm. By analyzing WRF‐Chem trajectories, the effects of scavenging, entrainment, and aqueous chemistry on outflow mixing ratios of CH2O, methyl hydroperoxide (CH3OOH), and hydrogen peroxide (H2O2) are quantified. Liquid phase microphysical scavenging was the dominant process reducing CH2O and H2O2 outflow mixing ratios in all three storms. Aqueous chemistry did not significantly affect outflow mixing ratios of all three species. In the severe storm and MCS, the higher than expected reductions in CH3OOH mixing ratios in the storm cores were primarily due to entrainment of low‐background CH3OOH. In the air mass storm, lower CH3OOH and H2O2 scavenging efficiencies (SEs) than in the MCS were partly due to entrainment of higher background CH3OOH and H2O2. Overestimated rain and hail production in WRF‐Chem reduces the confidence in ice retention fraction values determined for the peroxides and CH2O.
Key Points
Methyl hydroperoxide mixing ratios are decreased mainly by entrainment and liquid phase and mixed‐phase scavenging
Hydrogen peroxide and formaldehyde mixing ratios affected more by liquid phase scavenging than by entrainment or aqueous chemistry
Overestimated rain/hail production in WRF‐Chem reduces confidence in ice retention fraction values determined for peroxides and formaldehyde</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>32802698</pmid><doi>10.1029/2018JD028271</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0003-3873-3552</orcidid><orcidid>https://orcid.org/0000-0003-2067-5999</orcidid><orcidid>https://orcid.org/0000-0003-4340-5289</orcidid><orcidid>https://orcid.org/0000-0003-2255-877X</orcidid><orcidid>https://orcid.org/0000-0001-7598-3783</orcidid><orcidid>https://orcid.org/0000-0003-1123-0322</orcidid><orcidid>https://orcid.org/0000-0001-8480-9787</orcidid><orcidid>https://orcid.org/0000-0002-1394-3062</orcidid><orcidid>https://orcid.org/0000-0002-3998-9990</orcidid><orcidid>https://orcid.org/0000-0002-4883-6670</orcidid><orcidid>https://orcid.org/0000-0002-6690-784X</orcidid><orcidid>https://orcid.org/0000-0001-7894-6160</orcidid><orcidid>https://orcid.org/0000-0002-3073-3227</orcidid><orcidid>https://orcid.org/0000-0002-9252-0286</orcidid><orcidid>https://orcid.org/0000-0002-5230-3527</orcidid><orcidid>https://orcid.org/0000000248836670</orcidid><orcidid>https://orcid.org/0000000230733227</orcidid><orcidid>https://orcid.org/0000000213943062</orcidid><orcidid>https://orcid.org/000000032255877X</orcidid><orcidid>https://orcid.org/000000026690784X</orcidid><orcidid>https://orcid.org/0000000239989990</orcidid><orcidid>https://orcid.org/0000000184809787</orcidid><orcidid>https://orcid.org/0000000292520286</orcidid><orcidid>https://orcid.org/0000000338733552</orcidid><orcidid>https://orcid.org/0000000343405289</orcidid><orcidid>https://orcid.org/0000000311230322</orcidid><orcidid>https://orcid.org/0000000178946160</orcidid><orcidid>https://orcid.org/0000000175983783</orcidid><orcidid>https://orcid.org/0000000320675999</orcidid><orcidid>https://orcid.org/0000000252303527</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-897X |
ispartof | Journal of geophysical research. Atmospheres, 2018-07, Vol.123 (14), p.7594-7614 |
issn | 2169-897X 2169-8996 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7427629 |
source | Wiley; Alma/SFX Local Collection |
subjects | Air masses Aqueous chemistry Atmospheric chemistry Chemistry Cloud water Convective transport deep convection Entrainment Formaldehyde Geophysics Hail Hydrogen Hydrogen peroxide Inflow Liquid phases Mesoscale convective systems Methyl hydroperoxide in atmosphere Mixing ratio Organic chemistry Outflow Ozone Peroxides Scavenging Storms Trajectory analysis Troposphere Tropospheric ozone Upper troposphere |
title | Effects of Scavenging, Entrainment, and Aqueous Chemistry on Peroxides and Formaldehyde in Deep Convective Outflow Over the Central and Southeast United States |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T21%3A02%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20Scavenging,%20Entrainment,%20and%20Aqueous%20Chemistry%20on%20Peroxides%20and%20Formaldehyde%20in%20Deep%20Convective%20Outflow%20Over%20the%20Central%20and%20Southeast%20United%20States&rft.jtitle=Journal%20of%20geophysical%20research.%20Atmospheres&rft.au=Bela,%20Megan%20M.&rft.date=2018-07-27&rft.volume=123&rft.issue=14&rft.spage=7594&rft.epage=7614&rft.pages=7594-7614&rft.issn=2169-897X&rft.eissn=2169-8996&rft_id=info:doi/10.1029/2018JD028271&rft_dat=%3Cproquest_pubme%3E2434754727%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4837-4222a0b3f4ecb40e5c207f4864c15dfed2cb2d263c24b98f64698572e01618c83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2090672796&rft_id=info:pmid/32802698&rfr_iscdi=true |