Loading…
Local externalization of phosphatidylserine mediates developmental synaptic pruning by microglia
Neuronal circuit assembly requires the fine balance between synapse formation and elimination. Microglia, through the elimination of supernumerary synapses, have an established role in this process. While the microglial receptor TREM2 and the soluble complement proteins C1q and C3 are recognized as...
Saved in:
Published in: | The EMBO journal 2020-08, Vol.39 (16), p.e105380-n/a |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5850-4faa2018f4fa1cfc7afd6ae967e6e4ef44e309d56f50028cff2cd74ad1bd97d33 |
---|---|
cites | cdi_FETCH-LOGICAL-c5850-4faa2018f4fa1cfc7afd6ae967e6e4ef44e309d56f50028cff2cd74ad1bd97d33 |
container_end_page | n/a |
container_issue | 16 |
container_start_page | e105380 |
container_title | The EMBO journal |
container_volume | 39 |
creator | Scott‐Hewitt, Nicole Perrucci, Fabio Morini, Raffaella Erreni, Marco Mahoney, Matthew Witkowska, Agata Carey, Alanna Faggiani, Elisa Schuetz, Lisa Theresia Mason, Sydney Tamborini, Matteo Bizzotto, Matteo Passoni, Lorena Filipello, Fabia Jahn, Reinhard Stevens, Beth Matteoli, Michela |
description | Neuronal circuit assembly requires the fine balance between synapse formation and elimination. Microglia, through the elimination of supernumerary synapses, have an established role in this process. While the microglial receptor TREM2 and the soluble complement proteins C1q and C3 are recognized as key players, the neuronal molecular components that specify synapses to be eliminated are still undefined. Here, we show that exposed phosphatidylserine (PS) represents a neuronal “eat‐me” signal involved in microglial‐mediated pruning. In hippocampal neuron and microglia co‐cultures, synapse elimination can be partially prevented by blocking accessibility of exposed PS using Annexin V or through microglial loss of TREM2.
In vivo
, PS exposure at both hippocampal and retinogeniculate synapses and engulfment of PS‐labeled material by microglia occurs during established developmental periods of microglial‐mediated synapse elimination. Mice deficient in C1q, which fail to properly refine retinogeniculate connections, have elevated presynaptic PS exposure and reduced PS engulfment by microglia. These data provide mechanistic insight into microglial‐mediated synapse pruning and identify a novel role of developmentally regulated neuronal PS exposure that is common among developing brain structures.
Synopsis
Microglia help refine developing neural circuits through the elimination of supernumerary synapses. Here we show that exposed phosphatidylserine on pre‐ and postsynaptic membranes functions as an “eat‐me” signal contributing to microglial‐mediated synapse pruning. Phosphatidylserine exposure at both hippocampal and retinogeniculate synapses coincides with the onset of synapse elimination and PS engulfment by microglia.
Microglia‐mediated synapse elimination is dependent on TREM2 and exposed phosphatidylserine
in vitro
.
Exposed phosphatidylserine is developmentally regulated across periods of pruning in both hippocampus and visual system.
In vivo
developmental phosphatidylserine exposure is not caspase 3‐dependent.
Loss of C1q leads to elevated phosphatidylserine‐positive presynaptic inputs and reduced microglia engulfment.
Graphical Abstract
Exposed phosphatidylserine on pre‐ and postsynaptic membranes functions as an “eat‐me” signal contributing to microglia‐mediated synapse pruning. |
doi_str_mv | 10.15252/embj.2020105380 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7429741</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2434358606</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5850-4faa2018f4fa1cfc7afd6ae967e6e4ef44e309d56f50028cff2cd74ad1bd97d33</originalsourceid><addsrcrecordid>eNqFkUtv1DAUhS0EotPCnhWKxIZNit_OSAipVOWlQWxgbTzO9YxHiR3spJD-ejxMaSkSYmVb_s7Rufcg9ITgUyKooC-gX-9OKaaYYMEafA8tCJe4pliJ-2iBqSQ1J83yCB3nvMMYi0aRh-iIUSkUl2yBvq6iNV0FP0ZIwXT-yow-hiq6atjGPGzLs527DMkHqHpovRkhVy1cQheHHsJYxHkOZhi9rYY0BR821Xquem9T3HTePEIPnCkGj6_PE_TlzcXn83f16tPb9-dnq9qKRuCaO2PKFI0rF2KdVca10sBSKpDAwXEODC9bIZ3AmDbWOWpbxU1L1u1StYydoFcH32Fal5y2REum00PyvUmzjsbruz_Bb_UmXmrF6VJxUgyeXxuk-G2CPOreZwtdZwLEKWvKKROMEqoK-uwvdBen_fr2FONMNBLLQuEDVTaRcwJ3E4Zg_as-va9P39ZXJE__HOJG8LuvArw8AN99B_N_DfXFx9cf7viTgzwXZdhAug3-z0w_AWShu3s</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2434358606</pqid></control><display><type>article</type><title>Local externalization of phosphatidylserine mediates developmental synaptic pruning by microglia</title><source>PubMed Central(OpenAccess)</source><creator>Scott‐Hewitt, Nicole ; Perrucci, Fabio ; Morini, Raffaella ; Erreni, Marco ; Mahoney, Matthew ; Witkowska, Agata ; Carey, Alanna ; Faggiani, Elisa ; Schuetz, Lisa Theresia ; Mason, Sydney ; Tamborini, Matteo ; Bizzotto, Matteo ; Passoni, Lorena ; Filipello, Fabia ; Jahn, Reinhard ; Stevens, Beth ; Matteoli, Michela</creator><creatorcontrib>Scott‐Hewitt, Nicole ; Perrucci, Fabio ; Morini, Raffaella ; Erreni, Marco ; Mahoney, Matthew ; Witkowska, Agata ; Carey, Alanna ; Faggiani, Elisa ; Schuetz, Lisa Theresia ; Mason, Sydney ; Tamborini, Matteo ; Bizzotto, Matteo ; Passoni, Lorena ; Filipello, Fabia ; Jahn, Reinhard ; Stevens, Beth ; Matteoli, Michela</creatorcontrib><description>Neuronal circuit assembly requires the fine balance between synapse formation and elimination. Microglia, through the elimination of supernumerary synapses, have an established role in this process. While the microglial receptor TREM2 and the soluble complement proteins C1q and C3 are recognized as key players, the neuronal molecular components that specify synapses to be eliminated are still undefined. Here, we show that exposed phosphatidylserine (PS) represents a neuronal “eat‐me” signal involved in microglial‐mediated pruning. In hippocampal neuron and microglia co‐cultures, synapse elimination can be partially prevented by blocking accessibility of exposed PS using Annexin V or through microglial loss of TREM2.
In vivo
, PS exposure at both hippocampal and retinogeniculate synapses and engulfment of PS‐labeled material by microglia occurs during established developmental periods of microglial‐mediated synapse elimination. Mice deficient in C1q, which fail to properly refine retinogeniculate connections, have elevated presynaptic PS exposure and reduced PS engulfment by microglia. These data provide mechanistic insight into microglial‐mediated synapse pruning and identify a novel role of developmentally regulated neuronal PS exposure that is common among developing brain structures.
Synopsis
Microglia help refine developing neural circuits through the elimination of supernumerary synapses. Here we show that exposed phosphatidylserine on pre‐ and postsynaptic membranes functions as an “eat‐me” signal contributing to microglial‐mediated synapse pruning. Phosphatidylserine exposure at both hippocampal and retinogeniculate synapses coincides with the onset of synapse elimination and PS engulfment by microglia.
Microglia‐mediated synapse elimination is dependent on TREM2 and exposed phosphatidylserine
in vitro
.
Exposed phosphatidylserine is developmentally regulated across periods of pruning in both hippocampus and visual system.
In vivo
developmental phosphatidylserine exposure is not caspase 3‐dependent.
Loss of C1q leads to elevated phosphatidylserine‐positive presynaptic inputs and reduced microglia engulfment.
Graphical Abstract
Exposed phosphatidylserine on pre‐ and postsynaptic membranes functions as an “eat‐me” signal contributing to microglia‐mediated synapse pruning.</description><identifier>ISSN: 0261-4189</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.15252/embj.2020105380</identifier><identifier>PMID: 32657463</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Animals ; Annexin V ; C1q ; Caspase-3 ; Circuits ; Coculture Techniques ; Complement C1q - genetics ; Complement C1q - metabolism ; Complement C3 - genetics ; Complement C3 - metabolism ; Complement component C1q ; Complement component C3 ; EMBO19 ; EMBO27 ; Exposure ; Hippocampus ; Hippocampus - metabolism ; Membrane Glycoproteins - genetics ; Membrane Glycoproteins - metabolism ; Mice ; Mice, Knockout ; Microglia ; Microglia - metabolism ; Neural networks ; Neurons - metabolism ; Phosphatidylserine ; Phosphatidylserines - genetics ; Phosphatidylserines - metabolism ; Pruning ; Receptors, Immunologic - genetics ; Receptors, Immunologic - metabolism ; Supernumerary ; Synapse elimination ; synapse pruning ; Synapses ; Synapses - genetics ; Synapses - metabolism ; Synaptogenesis ; TREM2 ; Visual pathways ; Visual system</subject><ispartof>The EMBO journal, 2020-08, Vol.39 (16), p.e105380-n/a</ispartof><rights>The Author(s) 2020</rights><rights>2020 The Authors. Published under the terms of the CC BY NC ND 4.0 license</rights><rights>2020 The Authors. Published under the terms of the CC BY NC ND 4.0 license.</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5850-4faa2018f4fa1cfc7afd6ae967e6e4ef44e309d56f50028cff2cd74ad1bd97d33</citedby><cites>FETCH-LOGICAL-c5850-4faa2018f4fa1cfc7afd6ae967e6e4ef44e309d56f50028cff2cd74ad1bd97d33</cites><orcidid>0000-0001-6810-471X ; 0000-0003-4865-8218 ; 0000-0003-4226-1201 ; 0000-0003-1542-3498 ; 0000-0002-3569-7843</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7429741/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7429741/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32657463$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Scott‐Hewitt, Nicole</creatorcontrib><creatorcontrib>Perrucci, Fabio</creatorcontrib><creatorcontrib>Morini, Raffaella</creatorcontrib><creatorcontrib>Erreni, Marco</creatorcontrib><creatorcontrib>Mahoney, Matthew</creatorcontrib><creatorcontrib>Witkowska, Agata</creatorcontrib><creatorcontrib>Carey, Alanna</creatorcontrib><creatorcontrib>Faggiani, Elisa</creatorcontrib><creatorcontrib>Schuetz, Lisa Theresia</creatorcontrib><creatorcontrib>Mason, Sydney</creatorcontrib><creatorcontrib>Tamborini, Matteo</creatorcontrib><creatorcontrib>Bizzotto, Matteo</creatorcontrib><creatorcontrib>Passoni, Lorena</creatorcontrib><creatorcontrib>Filipello, Fabia</creatorcontrib><creatorcontrib>Jahn, Reinhard</creatorcontrib><creatorcontrib>Stevens, Beth</creatorcontrib><creatorcontrib>Matteoli, Michela</creatorcontrib><title>Local externalization of phosphatidylserine mediates developmental synaptic pruning by microglia</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><addtitle>EMBO J</addtitle><description>Neuronal circuit assembly requires the fine balance between synapse formation and elimination. Microglia, through the elimination of supernumerary synapses, have an established role in this process. While the microglial receptor TREM2 and the soluble complement proteins C1q and C3 are recognized as key players, the neuronal molecular components that specify synapses to be eliminated are still undefined. Here, we show that exposed phosphatidylserine (PS) represents a neuronal “eat‐me” signal involved in microglial‐mediated pruning. In hippocampal neuron and microglia co‐cultures, synapse elimination can be partially prevented by blocking accessibility of exposed PS using Annexin V or through microglial loss of TREM2.
In vivo
, PS exposure at both hippocampal and retinogeniculate synapses and engulfment of PS‐labeled material by microglia occurs during established developmental periods of microglial‐mediated synapse elimination. Mice deficient in C1q, which fail to properly refine retinogeniculate connections, have elevated presynaptic PS exposure and reduced PS engulfment by microglia. These data provide mechanistic insight into microglial‐mediated synapse pruning and identify a novel role of developmentally regulated neuronal PS exposure that is common among developing brain structures.
Synopsis
Microglia help refine developing neural circuits through the elimination of supernumerary synapses. Here we show that exposed phosphatidylserine on pre‐ and postsynaptic membranes functions as an “eat‐me” signal contributing to microglial‐mediated synapse pruning. Phosphatidylserine exposure at both hippocampal and retinogeniculate synapses coincides with the onset of synapse elimination and PS engulfment by microglia.
Microglia‐mediated synapse elimination is dependent on TREM2 and exposed phosphatidylserine
in vitro
.
Exposed phosphatidylserine is developmentally regulated across periods of pruning in both hippocampus and visual system.
In vivo
developmental phosphatidylserine exposure is not caspase 3‐dependent.
Loss of C1q leads to elevated phosphatidylserine‐positive presynaptic inputs and reduced microglia engulfment.
Graphical Abstract
Exposed phosphatidylserine on pre‐ and postsynaptic membranes functions as an “eat‐me” signal contributing to microglia‐mediated synapse pruning.</description><subject>Animals</subject><subject>Annexin V</subject><subject>C1q</subject><subject>Caspase-3</subject><subject>Circuits</subject><subject>Coculture Techniques</subject><subject>Complement C1q - genetics</subject><subject>Complement C1q - metabolism</subject><subject>Complement C3 - genetics</subject><subject>Complement C3 - metabolism</subject><subject>Complement component C1q</subject><subject>Complement component C3</subject><subject>EMBO19</subject><subject>EMBO27</subject><subject>Exposure</subject><subject>Hippocampus</subject><subject>Hippocampus - metabolism</subject><subject>Membrane Glycoproteins - genetics</subject><subject>Membrane Glycoproteins - metabolism</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Microglia</subject><subject>Microglia - metabolism</subject><subject>Neural networks</subject><subject>Neurons - metabolism</subject><subject>Phosphatidylserine</subject><subject>Phosphatidylserines - genetics</subject><subject>Phosphatidylserines - metabolism</subject><subject>Pruning</subject><subject>Receptors, Immunologic - genetics</subject><subject>Receptors, Immunologic - metabolism</subject><subject>Supernumerary</subject><subject>Synapse elimination</subject><subject>synapse pruning</subject><subject>Synapses</subject><subject>Synapses - genetics</subject><subject>Synapses - metabolism</subject><subject>Synaptogenesis</subject><subject>TREM2</subject><subject>Visual pathways</subject><subject>Visual system</subject><issn>0261-4189</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkUtv1DAUhS0EotPCnhWKxIZNit_OSAipVOWlQWxgbTzO9YxHiR3spJD-ejxMaSkSYmVb_s7Rufcg9ITgUyKooC-gX-9OKaaYYMEafA8tCJe4pliJ-2iBqSQ1J83yCB3nvMMYi0aRh-iIUSkUl2yBvq6iNV0FP0ZIwXT-yow-hiq6atjGPGzLs527DMkHqHpovRkhVy1cQheHHsJYxHkOZhi9rYY0BR821Xquem9T3HTePEIPnCkGj6_PE_TlzcXn83f16tPb9-dnq9qKRuCaO2PKFI0rF2KdVca10sBSKpDAwXEODC9bIZ3AmDbWOWpbxU1L1u1StYydoFcH32Fal5y2REum00PyvUmzjsbruz_Bb_UmXmrF6VJxUgyeXxuk-G2CPOreZwtdZwLEKWvKKROMEqoK-uwvdBen_fr2FONMNBLLQuEDVTaRcwJ3E4Zg_as-va9P39ZXJE__HOJG8LuvArw8AN99B_N_DfXFx9cf7viTgzwXZdhAug3-z0w_AWShu3s</recordid><startdate>20200817</startdate><enddate>20200817</enddate><creator>Scott‐Hewitt, Nicole</creator><creator>Perrucci, Fabio</creator><creator>Morini, Raffaella</creator><creator>Erreni, Marco</creator><creator>Mahoney, Matthew</creator><creator>Witkowska, Agata</creator><creator>Carey, Alanna</creator><creator>Faggiani, Elisa</creator><creator>Schuetz, Lisa Theresia</creator><creator>Mason, Sydney</creator><creator>Tamborini, Matteo</creator><creator>Bizzotto, Matteo</creator><creator>Passoni, Lorena</creator><creator>Filipello, Fabia</creator><creator>Jahn, Reinhard</creator><creator>Stevens, Beth</creator><creator>Matteoli, Michela</creator><general>Nature Publishing Group UK</general><general>Blackwell Publishing Ltd</general><general>John Wiley and Sons Inc</general><scope>C6C</scope><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6810-471X</orcidid><orcidid>https://orcid.org/0000-0003-4865-8218</orcidid><orcidid>https://orcid.org/0000-0003-4226-1201</orcidid><orcidid>https://orcid.org/0000-0003-1542-3498</orcidid><orcidid>https://orcid.org/0000-0002-3569-7843</orcidid></search><sort><creationdate>20200817</creationdate><title>Local externalization of phosphatidylserine mediates developmental synaptic pruning by microglia</title><author>Scott‐Hewitt, Nicole ; Perrucci, Fabio ; Morini, Raffaella ; Erreni, Marco ; Mahoney, Matthew ; Witkowska, Agata ; Carey, Alanna ; Faggiani, Elisa ; Schuetz, Lisa Theresia ; Mason, Sydney ; Tamborini, Matteo ; Bizzotto, Matteo ; Passoni, Lorena ; Filipello, Fabia ; Jahn, Reinhard ; Stevens, Beth ; Matteoli, Michela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5850-4faa2018f4fa1cfc7afd6ae967e6e4ef44e309d56f50028cff2cd74ad1bd97d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Annexin V</topic><topic>C1q</topic><topic>Caspase-3</topic><topic>Circuits</topic><topic>Coculture Techniques</topic><topic>Complement C1q - genetics</topic><topic>Complement C1q - metabolism</topic><topic>Complement C3 - genetics</topic><topic>Complement C3 - metabolism</topic><topic>Complement component C1q</topic><topic>Complement component C3</topic><topic>EMBO19</topic><topic>EMBO27</topic><topic>Exposure</topic><topic>Hippocampus</topic><topic>Hippocampus - metabolism</topic><topic>Membrane Glycoproteins - genetics</topic><topic>Membrane Glycoproteins - metabolism</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Microglia</topic><topic>Microglia - metabolism</topic><topic>Neural networks</topic><topic>Neurons - metabolism</topic><topic>Phosphatidylserine</topic><topic>Phosphatidylserines - genetics</topic><topic>Phosphatidylserines - metabolism</topic><topic>Pruning</topic><topic>Receptors, Immunologic - genetics</topic><topic>Receptors, Immunologic - metabolism</topic><topic>Supernumerary</topic><topic>Synapse elimination</topic><topic>synapse pruning</topic><topic>Synapses</topic><topic>Synapses - genetics</topic><topic>Synapses - metabolism</topic><topic>Synaptogenesis</topic><topic>TREM2</topic><topic>Visual pathways</topic><topic>Visual system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scott‐Hewitt, Nicole</creatorcontrib><creatorcontrib>Perrucci, Fabio</creatorcontrib><creatorcontrib>Morini, Raffaella</creatorcontrib><creatorcontrib>Erreni, Marco</creatorcontrib><creatorcontrib>Mahoney, Matthew</creatorcontrib><creatorcontrib>Witkowska, Agata</creatorcontrib><creatorcontrib>Carey, Alanna</creatorcontrib><creatorcontrib>Faggiani, Elisa</creatorcontrib><creatorcontrib>Schuetz, Lisa Theresia</creatorcontrib><creatorcontrib>Mason, Sydney</creatorcontrib><creatorcontrib>Tamborini, Matteo</creatorcontrib><creatorcontrib>Bizzotto, Matteo</creatorcontrib><creatorcontrib>Passoni, Lorena</creatorcontrib><creatorcontrib>Filipello, Fabia</creatorcontrib><creatorcontrib>Jahn, Reinhard</creatorcontrib><creatorcontrib>Stevens, Beth</creatorcontrib><creatorcontrib>Matteoli, Michela</creatorcontrib><collection>SpringerOpen</collection><collection>Wiley Online Library Open Access</collection><collection>Wiley-Blackwell Free Backfiles(OpenAccess)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scott‐Hewitt, Nicole</au><au>Perrucci, Fabio</au><au>Morini, Raffaella</au><au>Erreni, Marco</au><au>Mahoney, Matthew</au><au>Witkowska, Agata</au><au>Carey, Alanna</au><au>Faggiani, Elisa</au><au>Schuetz, Lisa Theresia</au><au>Mason, Sydney</au><au>Tamborini, Matteo</au><au>Bizzotto, Matteo</au><au>Passoni, Lorena</au><au>Filipello, Fabia</au><au>Jahn, Reinhard</au><au>Stevens, Beth</au><au>Matteoli, Michela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local externalization of phosphatidylserine mediates developmental synaptic pruning by microglia</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><addtitle>EMBO J</addtitle><date>2020-08-17</date><risdate>2020</risdate><volume>39</volume><issue>16</issue><spage>e105380</spage><epage>n/a</epage><pages>e105380-n/a</pages><issn>0261-4189</issn><eissn>1460-2075</eissn><abstract>Neuronal circuit assembly requires the fine balance between synapse formation and elimination. Microglia, through the elimination of supernumerary synapses, have an established role in this process. While the microglial receptor TREM2 and the soluble complement proteins C1q and C3 are recognized as key players, the neuronal molecular components that specify synapses to be eliminated are still undefined. Here, we show that exposed phosphatidylserine (PS) represents a neuronal “eat‐me” signal involved in microglial‐mediated pruning. In hippocampal neuron and microglia co‐cultures, synapse elimination can be partially prevented by blocking accessibility of exposed PS using Annexin V or through microglial loss of TREM2.
In vivo
, PS exposure at both hippocampal and retinogeniculate synapses and engulfment of PS‐labeled material by microglia occurs during established developmental periods of microglial‐mediated synapse elimination. Mice deficient in C1q, which fail to properly refine retinogeniculate connections, have elevated presynaptic PS exposure and reduced PS engulfment by microglia. These data provide mechanistic insight into microglial‐mediated synapse pruning and identify a novel role of developmentally regulated neuronal PS exposure that is common among developing brain structures.
Synopsis
Microglia help refine developing neural circuits through the elimination of supernumerary synapses. Here we show that exposed phosphatidylserine on pre‐ and postsynaptic membranes functions as an “eat‐me” signal contributing to microglial‐mediated synapse pruning. Phosphatidylserine exposure at both hippocampal and retinogeniculate synapses coincides with the onset of synapse elimination and PS engulfment by microglia.
Microglia‐mediated synapse elimination is dependent on TREM2 and exposed phosphatidylserine
in vitro
.
Exposed phosphatidylserine is developmentally regulated across periods of pruning in both hippocampus and visual system.
In vivo
developmental phosphatidylserine exposure is not caspase 3‐dependent.
Loss of C1q leads to elevated phosphatidylserine‐positive presynaptic inputs and reduced microglia engulfment.
Graphical Abstract
Exposed phosphatidylserine on pre‐ and postsynaptic membranes functions as an “eat‐me” signal contributing to microglia‐mediated synapse pruning.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32657463</pmid><doi>10.15252/embj.2020105380</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-6810-471X</orcidid><orcidid>https://orcid.org/0000-0003-4865-8218</orcidid><orcidid>https://orcid.org/0000-0003-4226-1201</orcidid><orcidid>https://orcid.org/0000-0003-1542-3498</orcidid><orcidid>https://orcid.org/0000-0002-3569-7843</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0261-4189 |
ispartof | The EMBO journal, 2020-08, Vol.39 (16), p.e105380-n/a |
issn | 0261-4189 1460-2075 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7429741 |
source | PubMed Central(OpenAccess) |
subjects | Animals Annexin V C1q Caspase-3 Circuits Coculture Techniques Complement C1q - genetics Complement C1q - metabolism Complement C3 - genetics Complement C3 - metabolism Complement component C1q Complement component C3 EMBO19 EMBO27 Exposure Hippocampus Hippocampus - metabolism Membrane Glycoproteins - genetics Membrane Glycoproteins - metabolism Mice Mice, Knockout Microglia Microglia - metabolism Neural networks Neurons - metabolism Phosphatidylserine Phosphatidylserines - genetics Phosphatidylserines - metabolism Pruning Receptors, Immunologic - genetics Receptors, Immunologic - metabolism Supernumerary Synapse elimination synapse pruning Synapses Synapses - genetics Synapses - metabolism Synaptogenesis TREM2 Visual pathways Visual system |
title | Local externalization of phosphatidylserine mediates developmental synaptic pruning by microglia |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T01%3A35%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20externalization%20of%20phosphatidylserine%20mediates%20developmental%20synaptic%20pruning%20by%20microglia&rft.jtitle=The%20EMBO%20journal&rft.au=Scott%E2%80%90Hewitt,%20Nicole&rft.date=2020-08-17&rft.volume=39&rft.issue=16&rft.spage=e105380&rft.epage=n/a&rft.pages=e105380-n/a&rft.issn=0261-4189&rft.eissn=1460-2075&rft_id=info:doi/10.15252/embj.2020105380&rft_dat=%3Cproquest_pubme%3E2434358606%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5850-4faa2018f4fa1cfc7afd6ae967e6e4ef44e309d56f50028cff2cd74ad1bd97d33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2434358606&rft_id=info:pmid/32657463&rfr_iscdi=true |