Loading…

Local externalization of phosphatidylserine mediates developmental synaptic pruning by microglia

Neuronal circuit assembly requires the fine balance between synapse formation and elimination. Microglia, through the elimination of supernumerary synapses, have an established role in this process. While the microglial receptor TREM2 and the soluble complement proteins C1q and C3 are recognized as...

Full description

Saved in:
Bibliographic Details
Published in:The EMBO journal 2020-08, Vol.39 (16), p.e105380-n/a
Main Authors: Scott‐Hewitt, Nicole, Perrucci, Fabio, Morini, Raffaella, Erreni, Marco, Mahoney, Matthew, Witkowska, Agata, Carey, Alanna, Faggiani, Elisa, Schuetz, Lisa Theresia, Mason, Sydney, Tamborini, Matteo, Bizzotto, Matteo, Passoni, Lorena, Filipello, Fabia, Jahn, Reinhard, Stevens, Beth, Matteoli, Michela
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5850-4faa2018f4fa1cfc7afd6ae967e6e4ef44e309d56f50028cff2cd74ad1bd97d33
cites cdi_FETCH-LOGICAL-c5850-4faa2018f4fa1cfc7afd6ae967e6e4ef44e309d56f50028cff2cd74ad1bd97d33
container_end_page n/a
container_issue 16
container_start_page e105380
container_title The EMBO journal
container_volume 39
creator Scott‐Hewitt, Nicole
Perrucci, Fabio
Morini, Raffaella
Erreni, Marco
Mahoney, Matthew
Witkowska, Agata
Carey, Alanna
Faggiani, Elisa
Schuetz, Lisa Theresia
Mason, Sydney
Tamborini, Matteo
Bizzotto, Matteo
Passoni, Lorena
Filipello, Fabia
Jahn, Reinhard
Stevens, Beth
Matteoli, Michela
description Neuronal circuit assembly requires the fine balance between synapse formation and elimination. Microglia, through the elimination of supernumerary synapses, have an established role in this process. While the microglial receptor TREM2 and the soluble complement proteins C1q and C3 are recognized as key players, the neuronal molecular components that specify synapses to be eliminated are still undefined. Here, we show that exposed phosphatidylserine (PS) represents a neuronal “eat‐me” signal involved in microglial‐mediated pruning. In hippocampal neuron and microglia co‐cultures, synapse elimination can be partially prevented by blocking accessibility of exposed PS using Annexin V or through microglial loss of TREM2. In vivo , PS exposure at both hippocampal and retinogeniculate synapses and engulfment of PS‐labeled material by microglia occurs during established developmental periods of microglial‐mediated synapse elimination. Mice deficient in C1q, which fail to properly refine retinogeniculate connections, have elevated presynaptic PS exposure and reduced PS engulfment by microglia. These data provide mechanistic insight into microglial‐mediated synapse pruning and identify a novel role of developmentally regulated neuronal PS exposure that is common among developing brain structures. Synopsis Microglia help refine developing neural circuits through the elimination of supernumerary synapses. Here we show that exposed phosphatidylserine on pre‐ and postsynaptic membranes functions as an “eat‐me” signal contributing to microglial‐mediated synapse pruning. Phosphatidylserine exposure at both hippocampal and retinogeniculate synapses coincides with the onset of synapse elimination and PS engulfment by microglia. Microglia‐mediated synapse elimination is dependent on TREM2 and exposed phosphatidylserine in vitro . Exposed phosphatidylserine is developmentally regulated across periods of pruning in both hippocampus and visual system. In vivo developmental phosphatidylserine exposure is not caspase 3‐dependent. Loss of C1q leads to elevated phosphatidylserine‐positive presynaptic inputs and reduced microglia engulfment. Graphical Abstract Exposed phosphatidylserine on pre‐ and postsynaptic membranes functions as an “eat‐me” signal contributing to microglia‐mediated synapse pruning.
doi_str_mv 10.15252/embj.2020105380
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7429741</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2434358606</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5850-4faa2018f4fa1cfc7afd6ae967e6e4ef44e309d56f50028cff2cd74ad1bd97d33</originalsourceid><addsrcrecordid>eNqFkUtv1DAUhS0EotPCnhWKxIZNit_OSAipVOWlQWxgbTzO9YxHiR3spJD-ejxMaSkSYmVb_s7Rufcg9ITgUyKooC-gX-9OKaaYYMEafA8tCJe4pliJ-2iBqSQ1J83yCB3nvMMYi0aRh-iIUSkUl2yBvq6iNV0FP0ZIwXT-yow-hiq6atjGPGzLs527DMkHqHpovRkhVy1cQheHHsJYxHkOZhi9rYY0BR821Xquem9T3HTePEIPnCkGj6_PE_TlzcXn83f16tPb9-dnq9qKRuCaO2PKFI0rF2KdVca10sBSKpDAwXEODC9bIZ3AmDbWOWpbxU1L1u1StYydoFcH32Fal5y2REum00PyvUmzjsbruz_Bb_UmXmrF6VJxUgyeXxuk-G2CPOreZwtdZwLEKWvKKROMEqoK-uwvdBen_fr2FONMNBLLQuEDVTaRcwJ3E4Zg_as-va9P39ZXJE__HOJG8LuvArw8AN99B_N_DfXFx9cf7viTgzwXZdhAug3-z0w_AWShu3s</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2434358606</pqid></control><display><type>article</type><title>Local externalization of phosphatidylserine mediates developmental synaptic pruning by microglia</title><source>PubMed Central(OpenAccess)</source><creator>Scott‐Hewitt, Nicole ; Perrucci, Fabio ; Morini, Raffaella ; Erreni, Marco ; Mahoney, Matthew ; Witkowska, Agata ; Carey, Alanna ; Faggiani, Elisa ; Schuetz, Lisa Theresia ; Mason, Sydney ; Tamborini, Matteo ; Bizzotto, Matteo ; Passoni, Lorena ; Filipello, Fabia ; Jahn, Reinhard ; Stevens, Beth ; Matteoli, Michela</creator><creatorcontrib>Scott‐Hewitt, Nicole ; Perrucci, Fabio ; Morini, Raffaella ; Erreni, Marco ; Mahoney, Matthew ; Witkowska, Agata ; Carey, Alanna ; Faggiani, Elisa ; Schuetz, Lisa Theresia ; Mason, Sydney ; Tamborini, Matteo ; Bizzotto, Matteo ; Passoni, Lorena ; Filipello, Fabia ; Jahn, Reinhard ; Stevens, Beth ; Matteoli, Michela</creatorcontrib><description>Neuronal circuit assembly requires the fine balance between synapse formation and elimination. Microglia, through the elimination of supernumerary synapses, have an established role in this process. While the microglial receptor TREM2 and the soluble complement proteins C1q and C3 are recognized as key players, the neuronal molecular components that specify synapses to be eliminated are still undefined. Here, we show that exposed phosphatidylserine (PS) represents a neuronal “eat‐me” signal involved in microglial‐mediated pruning. In hippocampal neuron and microglia co‐cultures, synapse elimination can be partially prevented by blocking accessibility of exposed PS using Annexin V or through microglial loss of TREM2. In vivo , PS exposure at both hippocampal and retinogeniculate synapses and engulfment of PS‐labeled material by microglia occurs during established developmental periods of microglial‐mediated synapse elimination. Mice deficient in C1q, which fail to properly refine retinogeniculate connections, have elevated presynaptic PS exposure and reduced PS engulfment by microglia. These data provide mechanistic insight into microglial‐mediated synapse pruning and identify a novel role of developmentally regulated neuronal PS exposure that is common among developing brain structures. Synopsis Microglia help refine developing neural circuits through the elimination of supernumerary synapses. Here we show that exposed phosphatidylserine on pre‐ and postsynaptic membranes functions as an “eat‐me” signal contributing to microglial‐mediated synapse pruning. Phosphatidylserine exposure at both hippocampal and retinogeniculate synapses coincides with the onset of synapse elimination and PS engulfment by microglia. Microglia‐mediated synapse elimination is dependent on TREM2 and exposed phosphatidylserine in vitro . Exposed phosphatidylserine is developmentally regulated across periods of pruning in both hippocampus and visual system. In vivo developmental phosphatidylserine exposure is not caspase 3‐dependent. Loss of C1q leads to elevated phosphatidylserine‐positive presynaptic inputs and reduced microglia engulfment. Graphical Abstract Exposed phosphatidylserine on pre‐ and postsynaptic membranes functions as an “eat‐me” signal contributing to microglia‐mediated synapse pruning.</description><identifier>ISSN: 0261-4189</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.15252/embj.2020105380</identifier><identifier>PMID: 32657463</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Animals ; Annexin V ; C1q ; Caspase-3 ; Circuits ; Coculture Techniques ; Complement C1q - genetics ; Complement C1q - metabolism ; Complement C3 - genetics ; Complement C3 - metabolism ; Complement component C1q ; Complement component C3 ; EMBO19 ; EMBO27 ; Exposure ; Hippocampus ; Hippocampus - metabolism ; Membrane Glycoproteins - genetics ; Membrane Glycoproteins - metabolism ; Mice ; Mice, Knockout ; Microglia ; Microglia - metabolism ; Neural networks ; Neurons - metabolism ; Phosphatidylserine ; Phosphatidylserines - genetics ; Phosphatidylserines - metabolism ; Pruning ; Receptors, Immunologic - genetics ; Receptors, Immunologic - metabolism ; Supernumerary ; Synapse elimination ; synapse pruning ; Synapses ; Synapses - genetics ; Synapses - metabolism ; Synaptogenesis ; TREM2 ; Visual pathways ; Visual system</subject><ispartof>The EMBO journal, 2020-08, Vol.39 (16), p.e105380-n/a</ispartof><rights>The Author(s) 2020</rights><rights>2020 The Authors. Published under the terms of the CC BY NC ND 4.0 license</rights><rights>2020 The Authors. Published under the terms of the CC BY NC ND 4.0 license.</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5850-4faa2018f4fa1cfc7afd6ae967e6e4ef44e309d56f50028cff2cd74ad1bd97d33</citedby><cites>FETCH-LOGICAL-c5850-4faa2018f4fa1cfc7afd6ae967e6e4ef44e309d56f50028cff2cd74ad1bd97d33</cites><orcidid>0000-0001-6810-471X ; 0000-0003-4865-8218 ; 0000-0003-4226-1201 ; 0000-0003-1542-3498 ; 0000-0002-3569-7843</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7429741/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7429741/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32657463$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Scott‐Hewitt, Nicole</creatorcontrib><creatorcontrib>Perrucci, Fabio</creatorcontrib><creatorcontrib>Morini, Raffaella</creatorcontrib><creatorcontrib>Erreni, Marco</creatorcontrib><creatorcontrib>Mahoney, Matthew</creatorcontrib><creatorcontrib>Witkowska, Agata</creatorcontrib><creatorcontrib>Carey, Alanna</creatorcontrib><creatorcontrib>Faggiani, Elisa</creatorcontrib><creatorcontrib>Schuetz, Lisa Theresia</creatorcontrib><creatorcontrib>Mason, Sydney</creatorcontrib><creatorcontrib>Tamborini, Matteo</creatorcontrib><creatorcontrib>Bizzotto, Matteo</creatorcontrib><creatorcontrib>Passoni, Lorena</creatorcontrib><creatorcontrib>Filipello, Fabia</creatorcontrib><creatorcontrib>Jahn, Reinhard</creatorcontrib><creatorcontrib>Stevens, Beth</creatorcontrib><creatorcontrib>Matteoli, Michela</creatorcontrib><title>Local externalization of phosphatidylserine mediates developmental synaptic pruning by microglia</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><addtitle>EMBO J</addtitle><description>Neuronal circuit assembly requires the fine balance between synapse formation and elimination. Microglia, through the elimination of supernumerary synapses, have an established role in this process. While the microglial receptor TREM2 and the soluble complement proteins C1q and C3 are recognized as key players, the neuronal molecular components that specify synapses to be eliminated are still undefined. Here, we show that exposed phosphatidylserine (PS) represents a neuronal “eat‐me” signal involved in microglial‐mediated pruning. In hippocampal neuron and microglia co‐cultures, synapse elimination can be partially prevented by blocking accessibility of exposed PS using Annexin V or through microglial loss of TREM2. In vivo , PS exposure at both hippocampal and retinogeniculate synapses and engulfment of PS‐labeled material by microglia occurs during established developmental periods of microglial‐mediated synapse elimination. Mice deficient in C1q, which fail to properly refine retinogeniculate connections, have elevated presynaptic PS exposure and reduced PS engulfment by microglia. These data provide mechanistic insight into microglial‐mediated synapse pruning and identify a novel role of developmentally regulated neuronal PS exposure that is common among developing brain structures. Synopsis Microglia help refine developing neural circuits through the elimination of supernumerary synapses. Here we show that exposed phosphatidylserine on pre‐ and postsynaptic membranes functions as an “eat‐me” signal contributing to microglial‐mediated synapse pruning. Phosphatidylserine exposure at both hippocampal and retinogeniculate synapses coincides with the onset of synapse elimination and PS engulfment by microglia. Microglia‐mediated synapse elimination is dependent on TREM2 and exposed phosphatidylserine in vitro . Exposed phosphatidylserine is developmentally regulated across periods of pruning in both hippocampus and visual system. In vivo developmental phosphatidylserine exposure is not caspase 3‐dependent. Loss of C1q leads to elevated phosphatidylserine‐positive presynaptic inputs and reduced microglia engulfment. Graphical Abstract Exposed phosphatidylserine on pre‐ and postsynaptic membranes functions as an “eat‐me” signal contributing to microglia‐mediated synapse pruning.</description><subject>Animals</subject><subject>Annexin V</subject><subject>C1q</subject><subject>Caspase-3</subject><subject>Circuits</subject><subject>Coculture Techniques</subject><subject>Complement C1q - genetics</subject><subject>Complement C1q - metabolism</subject><subject>Complement C3 - genetics</subject><subject>Complement C3 - metabolism</subject><subject>Complement component C1q</subject><subject>Complement component C3</subject><subject>EMBO19</subject><subject>EMBO27</subject><subject>Exposure</subject><subject>Hippocampus</subject><subject>Hippocampus - metabolism</subject><subject>Membrane Glycoproteins - genetics</subject><subject>Membrane Glycoproteins - metabolism</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Microglia</subject><subject>Microglia - metabolism</subject><subject>Neural networks</subject><subject>Neurons - metabolism</subject><subject>Phosphatidylserine</subject><subject>Phosphatidylserines - genetics</subject><subject>Phosphatidylserines - metabolism</subject><subject>Pruning</subject><subject>Receptors, Immunologic - genetics</subject><subject>Receptors, Immunologic - metabolism</subject><subject>Supernumerary</subject><subject>Synapse elimination</subject><subject>synapse pruning</subject><subject>Synapses</subject><subject>Synapses - genetics</subject><subject>Synapses - metabolism</subject><subject>Synaptogenesis</subject><subject>TREM2</subject><subject>Visual pathways</subject><subject>Visual system</subject><issn>0261-4189</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkUtv1DAUhS0EotPCnhWKxIZNit_OSAipVOWlQWxgbTzO9YxHiR3spJD-ejxMaSkSYmVb_s7Rufcg9ITgUyKooC-gX-9OKaaYYMEafA8tCJe4pliJ-2iBqSQ1J83yCB3nvMMYi0aRh-iIUSkUl2yBvq6iNV0FP0ZIwXT-yow-hiq6atjGPGzLs527DMkHqHpovRkhVy1cQheHHsJYxHkOZhi9rYY0BR821Xquem9T3HTePEIPnCkGj6_PE_TlzcXn83f16tPb9-dnq9qKRuCaO2PKFI0rF2KdVca10sBSKpDAwXEODC9bIZ3AmDbWOWpbxU1L1u1StYydoFcH32Fal5y2REum00PyvUmzjsbruz_Bb_UmXmrF6VJxUgyeXxuk-G2CPOreZwtdZwLEKWvKKROMEqoK-uwvdBen_fr2FONMNBLLQuEDVTaRcwJ3E4Zg_as-va9P39ZXJE__HOJG8LuvArw8AN99B_N_DfXFx9cf7viTgzwXZdhAug3-z0w_AWShu3s</recordid><startdate>20200817</startdate><enddate>20200817</enddate><creator>Scott‐Hewitt, Nicole</creator><creator>Perrucci, Fabio</creator><creator>Morini, Raffaella</creator><creator>Erreni, Marco</creator><creator>Mahoney, Matthew</creator><creator>Witkowska, Agata</creator><creator>Carey, Alanna</creator><creator>Faggiani, Elisa</creator><creator>Schuetz, Lisa Theresia</creator><creator>Mason, Sydney</creator><creator>Tamborini, Matteo</creator><creator>Bizzotto, Matteo</creator><creator>Passoni, Lorena</creator><creator>Filipello, Fabia</creator><creator>Jahn, Reinhard</creator><creator>Stevens, Beth</creator><creator>Matteoli, Michela</creator><general>Nature Publishing Group UK</general><general>Blackwell Publishing Ltd</general><general>John Wiley and Sons Inc</general><scope>C6C</scope><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6810-471X</orcidid><orcidid>https://orcid.org/0000-0003-4865-8218</orcidid><orcidid>https://orcid.org/0000-0003-4226-1201</orcidid><orcidid>https://orcid.org/0000-0003-1542-3498</orcidid><orcidid>https://orcid.org/0000-0002-3569-7843</orcidid></search><sort><creationdate>20200817</creationdate><title>Local externalization of phosphatidylserine mediates developmental synaptic pruning by microglia</title><author>Scott‐Hewitt, Nicole ; Perrucci, Fabio ; Morini, Raffaella ; Erreni, Marco ; Mahoney, Matthew ; Witkowska, Agata ; Carey, Alanna ; Faggiani, Elisa ; Schuetz, Lisa Theresia ; Mason, Sydney ; Tamborini, Matteo ; Bizzotto, Matteo ; Passoni, Lorena ; Filipello, Fabia ; Jahn, Reinhard ; Stevens, Beth ; Matteoli, Michela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5850-4faa2018f4fa1cfc7afd6ae967e6e4ef44e309d56f50028cff2cd74ad1bd97d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Annexin V</topic><topic>C1q</topic><topic>Caspase-3</topic><topic>Circuits</topic><topic>Coculture Techniques</topic><topic>Complement C1q - genetics</topic><topic>Complement C1q - metabolism</topic><topic>Complement C3 - genetics</topic><topic>Complement C3 - metabolism</topic><topic>Complement component C1q</topic><topic>Complement component C3</topic><topic>EMBO19</topic><topic>EMBO27</topic><topic>Exposure</topic><topic>Hippocampus</topic><topic>Hippocampus - metabolism</topic><topic>Membrane Glycoproteins - genetics</topic><topic>Membrane Glycoproteins - metabolism</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Microglia</topic><topic>Microglia - metabolism</topic><topic>Neural networks</topic><topic>Neurons - metabolism</topic><topic>Phosphatidylserine</topic><topic>Phosphatidylserines - genetics</topic><topic>Phosphatidylserines - metabolism</topic><topic>Pruning</topic><topic>Receptors, Immunologic - genetics</topic><topic>Receptors, Immunologic - metabolism</topic><topic>Supernumerary</topic><topic>Synapse elimination</topic><topic>synapse pruning</topic><topic>Synapses</topic><topic>Synapses - genetics</topic><topic>Synapses - metabolism</topic><topic>Synaptogenesis</topic><topic>TREM2</topic><topic>Visual pathways</topic><topic>Visual system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scott‐Hewitt, Nicole</creatorcontrib><creatorcontrib>Perrucci, Fabio</creatorcontrib><creatorcontrib>Morini, Raffaella</creatorcontrib><creatorcontrib>Erreni, Marco</creatorcontrib><creatorcontrib>Mahoney, Matthew</creatorcontrib><creatorcontrib>Witkowska, Agata</creatorcontrib><creatorcontrib>Carey, Alanna</creatorcontrib><creatorcontrib>Faggiani, Elisa</creatorcontrib><creatorcontrib>Schuetz, Lisa Theresia</creatorcontrib><creatorcontrib>Mason, Sydney</creatorcontrib><creatorcontrib>Tamborini, Matteo</creatorcontrib><creatorcontrib>Bizzotto, Matteo</creatorcontrib><creatorcontrib>Passoni, Lorena</creatorcontrib><creatorcontrib>Filipello, Fabia</creatorcontrib><creatorcontrib>Jahn, Reinhard</creatorcontrib><creatorcontrib>Stevens, Beth</creatorcontrib><creatorcontrib>Matteoli, Michela</creatorcontrib><collection>SpringerOpen</collection><collection>Wiley Online Library Open Access</collection><collection>Wiley-Blackwell Free Backfiles(OpenAccess)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scott‐Hewitt, Nicole</au><au>Perrucci, Fabio</au><au>Morini, Raffaella</au><au>Erreni, Marco</au><au>Mahoney, Matthew</au><au>Witkowska, Agata</au><au>Carey, Alanna</au><au>Faggiani, Elisa</au><au>Schuetz, Lisa Theresia</au><au>Mason, Sydney</au><au>Tamborini, Matteo</au><au>Bizzotto, Matteo</au><au>Passoni, Lorena</au><au>Filipello, Fabia</au><au>Jahn, Reinhard</au><au>Stevens, Beth</au><au>Matteoli, Michela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local externalization of phosphatidylserine mediates developmental synaptic pruning by microglia</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><addtitle>EMBO J</addtitle><date>2020-08-17</date><risdate>2020</risdate><volume>39</volume><issue>16</issue><spage>e105380</spage><epage>n/a</epage><pages>e105380-n/a</pages><issn>0261-4189</issn><eissn>1460-2075</eissn><abstract>Neuronal circuit assembly requires the fine balance between synapse formation and elimination. Microglia, through the elimination of supernumerary synapses, have an established role in this process. While the microglial receptor TREM2 and the soluble complement proteins C1q and C3 are recognized as key players, the neuronal molecular components that specify synapses to be eliminated are still undefined. Here, we show that exposed phosphatidylserine (PS) represents a neuronal “eat‐me” signal involved in microglial‐mediated pruning. In hippocampal neuron and microglia co‐cultures, synapse elimination can be partially prevented by blocking accessibility of exposed PS using Annexin V or through microglial loss of TREM2. In vivo , PS exposure at both hippocampal and retinogeniculate synapses and engulfment of PS‐labeled material by microglia occurs during established developmental periods of microglial‐mediated synapse elimination. Mice deficient in C1q, which fail to properly refine retinogeniculate connections, have elevated presynaptic PS exposure and reduced PS engulfment by microglia. These data provide mechanistic insight into microglial‐mediated synapse pruning and identify a novel role of developmentally regulated neuronal PS exposure that is common among developing brain structures. Synopsis Microglia help refine developing neural circuits through the elimination of supernumerary synapses. Here we show that exposed phosphatidylserine on pre‐ and postsynaptic membranes functions as an “eat‐me” signal contributing to microglial‐mediated synapse pruning. Phosphatidylserine exposure at both hippocampal and retinogeniculate synapses coincides with the onset of synapse elimination and PS engulfment by microglia. Microglia‐mediated synapse elimination is dependent on TREM2 and exposed phosphatidylserine in vitro . Exposed phosphatidylserine is developmentally regulated across periods of pruning in both hippocampus and visual system. In vivo developmental phosphatidylserine exposure is not caspase 3‐dependent. Loss of C1q leads to elevated phosphatidylserine‐positive presynaptic inputs and reduced microglia engulfment. Graphical Abstract Exposed phosphatidylserine on pre‐ and postsynaptic membranes functions as an “eat‐me” signal contributing to microglia‐mediated synapse pruning.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32657463</pmid><doi>10.15252/embj.2020105380</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-6810-471X</orcidid><orcidid>https://orcid.org/0000-0003-4865-8218</orcidid><orcidid>https://orcid.org/0000-0003-4226-1201</orcidid><orcidid>https://orcid.org/0000-0003-1542-3498</orcidid><orcidid>https://orcid.org/0000-0002-3569-7843</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0261-4189
ispartof The EMBO journal, 2020-08, Vol.39 (16), p.e105380-n/a
issn 0261-4189
1460-2075
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7429741
source PubMed Central(OpenAccess)
subjects Animals
Annexin V
C1q
Caspase-3
Circuits
Coculture Techniques
Complement C1q - genetics
Complement C1q - metabolism
Complement C3 - genetics
Complement C3 - metabolism
Complement component C1q
Complement component C3
EMBO19
EMBO27
Exposure
Hippocampus
Hippocampus - metabolism
Membrane Glycoproteins - genetics
Membrane Glycoproteins - metabolism
Mice
Mice, Knockout
Microglia
Microglia - metabolism
Neural networks
Neurons - metabolism
Phosphatidylserine
Phosphatidylserines - genetics
Phosphatidylserines - metabolism
Pruning
Receptors, Immunologic - genetics
Receptors, Immunologic - metabolism
Supernumerary
Synapse elimination
synapse pruning
Synapses
Synapses - genetics
Synapses - metabolism
Synaptogenesis
TREM2
Visual pathways
Visual system
title Local externalization of phosphatidylserine mediates developmental synaptic pruning by microglia
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T01%3A35%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20externalization%20of%20phosphatidylserine%20mediates%20developmental%20synaptic%20pruning%20by%20microglia&rft.jtitle=The%20EMBO%20journal&rft.au=Scott%E2%80%90Hewitt,%20Nicole&rft.date=2020-08-17&rft.volume=39&rft.issue=16&rft.spage=e105380&rft.epage=n/a&rft.pages=e105380-n/a&rft.issn=0261-4189&rft.eissn=1460-2075&rft_id=info:doi/10.15252/embj.2020105380&rft_dat=%3Cproquest_pubme%3E2434358606%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5850-4faa2018f4fa1cfc7afd6ae967e6e4ef44e309d56f50028cff2cd74ad1bd97d33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2434358606&rft_id=info:pmid/32657463&rfr_iscdi=true