Loading…
A prediction model of outcome of SARS-CoV-2 pneumonia based on laboratory findings
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in thousands of deaths in the world. Information about prediction model of prognosis of SARS-CoV-2 infection is scarce. We used machine learning for processing laboratory findings of 110 patients with SARS-CoV-2 pneumonia...
Saved in:
Published in: | Scientific reports 2020-08, Vol.10 (1), p.14042-14042, Article 14042 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c527t-ff2720a820ed6c161e084a71dd991a6c82de42774322341bed18ce560c8190be3 |
---|---|
cites | cdi_FETCH-LOGICAL-c527t-ff2720a820ed6c161e084a71dd991a6c82de42774322341bed18ce560c8190be3 |
container_end_page | 14042 |
container_issue | 1 |
container_start_page | 14042 |
container_title | Scientific reports |
container_volume | 10 |
creator | Wu, Gang Zhou, Shuchang Wang, Yujin Lv, Wenzhi Wang, Shili Wang, Ting Li, Xiaoming |
description | The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in thousands of deaths in the world. Information about prediction model of prognosis of SARS-CoV-2 infection is scarce. We used machine learning for processing laboratory findings of 110 patients with SARS-CoV-2 pneumonia (including 51 non-survivors and 59 discharged patients). The maximum relevance minimum redundancy (mRMR) algorithm and the least absolute shrinkage and selection operator logistic regression model were used for selection of laboratory features. Seven laboratory features selected in the model were: prothrombin activity, urea, white blood cell, interleukin-2 receptor, indirect bilirubin, myoglobin, and fibrinogen degradation products. The signature constructed using the seven features had 98% [93%, 100%] sensitivity and 91% [84%, 99%] specificity in predicting outcome of SARS-CoV-2 pneumonia. Thus it is feasible to establish an accurate prediction model of outcome of SARS-CoV-2 pneumonia based on laboratory findings. |
doi_str_mv | 10.1038/s41598-020-71114-7 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7441177</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4322133123</sourcerecordid><originalsourceid>FETCH-LOGICAL-c527t-ff2720a820ed6c161e084a71dd991a6c82de42774322341bed18ce560c8190be3</originalsourceid><addsrcrecordid>eNp1kU9r3DAQxUVJaUKaL9BDMeSSi1qNJFv2pbAs6R8IFJK2VyFL462CLW0kO5BvX203DZtAddHA_ObpjR4h74B9ACbaj1lC3bWUcUYVAEiqXpETzmRNueD86KA-Jmc537Jyat5J6N6QY8FbzjiwE3K9qrYJnbezj6GaosOxikMVl9nGCXflzer6hq7jL8qrbcBlisGbqjcZXVUmRtPHZOaYHqrBB-fDJr8lrwczZjx7vE_Jz8-XP9Zf6dX3L9_Wqytqa65mOgxccWaKEXSNhQaQtdIocK7rwDS25Q4lV0qWFYSEHh20FuuG2RY61qM4JZ_2utuln9BZDHMyo94mP5n0oKPx-nkn-N96E--1khJAqSJw8SiQ4t2CedaTzxbH0QSMS9ZcikbsfkwW9PwFehuXFMp6GtpOdI2Api4U31M2xZwTDk9mgOldanqfmi6p6b-p6Z2L94drPI38y6gAYg_k0gobTAdv_1_2D1vYoTM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1893963165</pqid></control><display><type>article</type><title>A prediction model of outcome of SARS-CoV-2 pneumonia based on laboratory findings</title><source>Publicly Available Content Database</source><source>Full-Text Journals in Chemistry (Open access)</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Wu, Gang ; Zhou, Shuchang ; Wang, Yujin ; Lv, Wenzhi ; Wang, Shili ; Wang, Ting ; Li, Xiaoming</creator><creatorcontrib>Wu, Gang ; Zhou, Shuchang ; Wang, Yujin ; Lv, Wenzhi ; Wang, Shili ; Wang, Ting ; Li, Xiaoming</creatorcontrib><description>The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in thousands of deaths in the world. Information about prediction model of prognosis of SARS-CoV-2 infection is scarce. We used machine learning for processing laboratory findings of 110 patients with SARS-CoV-2 pneumonia (including 51 non-survivors and 59 discharged patients). The maximum relevance minimum redundancy (mRMR) algorithm and the least absolute shrinkage and selection operator logistic regression model were used for selection of laboratory features. Seven laboratory features selected in the model were: prothrombin activity, urea, white blood cell, interleukin-2 receptor, indirect bilirubin, myoglobin, and fibrinogen degradation products. The signature constructed using the seven features had 98% [93%, 100%] sensitivity and 91% [84%, 99%] specificity in predicting outcome of SARS-CoV-2 pneumonia. Thus it is feasible to establish an accurate prediction model of outcome of SARS-CoV-2 pneumonia based on laboratory findings.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-71114-7</identifier><identifier>PMID: 32820210</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>692/699/255 ; 692/699/255/2514 ; Age ; Aged ; Algorithms ; Artificial intelligence ; Betacoronavirus - genetics ; Bilirubin - blood ; Blood ; Blood platelets ; Cochlea ; Collagen ; Coronavirus Infections - blood ; Coronavirus Infections - therapy ; Coronavirus Infections - virology ; Coronaviruses ; COVID-19 ; Cytokines ; Data Accuracy ; Degradation products ; Dehydrogenases ; Feasibility Studies ; Feature selection ; Female ; Fibrin Fibrinogen Degradation Products - analysis ; Forecasting - methods ; Hearing ; Hospitals ; Humanities and Social Sciences ; Humans ; Infections ; Laboratories ; Leukocytes ; Machine Learning ; Male ; Mapping ; Models, Statistical ; Mortality ; multidisciplinary ; Myoglobin - blood ; Myoglobins ; Neutrophils ; Pandemics ; Patients ; Pneumonia ; Pneumonia, Viral - blood ; Pneumonia, Viral - therapy ; Pneumonia, Viral - virology ; Prediction models ; Prognosis ; Prothrombin - analysis ; Receptors, Interleukin-2 - blood ; Retrospective Studies ; SARS-CoV-2 ; Science ; Science (multidisciplinary) ; Sensitivity and Specificity ; Severe acute respiratory syndrome coronavirus 2 ; Treatment Outcome ; Urea ; Urea - blood</subject><ispartof>Scientific reports, 2020-08, Vol.10 (1), p.14042-14042, Article 14042</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c527t-ff2720a820ed6c161e084a71dd991a6c82de42774322341bed18ce560c8190be3</citedby><cites>FETCH-LOGICAL-c527t-ff2720a820ed6c161e084a71dd991a6c82de42774322341bed18ce560c8190be3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1893963165/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1893963165?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74997</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32820210$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Gang</creatorcontrib><creatorcontrib>Zhou, Shuchang</creatorcontrib><creatorcontrib>Wang, Yujin</creatorcontrib><creatorcontrib>Lv, Wenzhi</creatorcontrib><creatorcontrib>Wang, Shili</creatorcontrib><creatorcontrib>Wang, Ting</creatorcontrib><creatorcontrib>Li, Xiaoming</creatorcontrib><title>A prediction model of outcome of SARS-CoV-2 pneumonia based on laboratory findings</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in thousands of deaths in the world. Information about prediction model of prognosis of SARS-CoV-2 infection is scarce. We used machine learning for processing laboratory findings of 110 patients with SARS-CoV-2 pneumonia (including 51 non-survivors and 59 discharged patients). The maximum relevance minimum redundancy (mRMR) algorithm and the least absolute shrinkage and selection operator logistic regression model were used for selection of laboratory features. Seven laboratory features selected in the model were: prothrombin activity, urea, white blood cell, interleukin-2 receptor, indirect bilirubin, myoglobin, and fibrinogen degradation products. The signature constructed using the seven features had 98% [93%, 100%] sensitivity and 91% [84%, 99%] specificity in predicting outcome of SARS-CoV-2 pneumonia. Thus it is feasible to establish an accurate prediction model of outcome of SARS-CoV-2 pneumonia based on laboratory findings.</description><subject>692/699/255</subject><subject>692/699/255/2514</subject><subject>Age</subject><subject>Aged</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Betacoronavirus - genetics</subject><subject>Bilirubin - blood</subject><subject>Blood</subject><subject>Blood platelets</subject><subject>Cochlea</subject><subject>Collagen</subject><subject>Coronavirus Infections - blood</subject><subject>Coronavirus Infections - therapy</subject><subject>Coronavirus Infections - virology</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Cytokines</subject><subject>Data Accuracy</subject><subject>Degradation products</subject><subject>Dehydrogenases</subject><subject>Feasibility Studies</subject><subject>Feature selection</subject><subject>Female</subject><subject>Fibrin Fibrinogen Degradation Products - analysis</subject><subject>Forecasting - methods</subject><subject>Hearing</subject><subject>Hospitals</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Infections</subject><subject>Laboratories</subject><subject>Leukocytes</subject><subject>Machine Learning</subject><subject>Male</subject><subject>Mapping</subject><subject>Models, Statistical</subject><subject>Mortality</subject><subject>multidisciplinary</subject><subject>Myoglobin - blood</subject><subject>Myoglobins</subject><subject>Neutrophils</subject><subject>Pandemics</subject><subject>Patients</subject><subject>Pneumonia</subject><subject>Pneumonia, Viral - blood</subject><subject>Pneumonia, Viral - therapy</subject><subject>Pneumonia, Viral - virology</subject><subject>Prediction models</subject><subject>Prognosis</subject><subject>Prothrombin - analysis</subject><subject>Receptors, Interleukin-2 - blood</subject><subject>Retrospective Studies</subject><subject>SARS-CoV-2</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sensitivity and Specificity</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Treatment Outcome</subject><subject>Urea</subject><subject>Urea - blood</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp1kU9r3DAQxUVJaUKaL9BDMeSSi1qNJFv2pbAs6R8IFJK2VyFL462CLW0kO5BvX203DZtAddHA_ObpjR4h74B9ACbaj1lC3bWUcUYVAEiqXpETzmRNueD86KA-Jmc537Jyat5J6N6QY8FbzjiwE3K9qrYJnbezj6GaosOxikMVl9nGCXflzer6hq7jL8qrbcBlisGbqjcZXVUmRtPHZOaYHqrBB-fDJr8lrwczZjx7vE_Jz8-XP9Zf6dX3L9_Wqytqa65mOgxccWaKEXSNhQaQtdIocK7rwDS25Q4lV0qWFYSEHh20FuuG2RY61qM4JZ_2utuln9BZDHMyo94mP5n0oKPx-nkn-N96E--1khJAqSJw8SiQ4t2CedaTzxbH0QSMS9ZcikbsfkwW9PwFehuXFMp6GtpOdI2Api4U31M2xZwTDk9mgOldanqfmi6p6b-p6Z2L94drPI38y6gAYg_k0gobTAdv_1_2D1vYoTM</recordid><startdate>20200820</startdate><enddate>20200820</enddate><creator>Wu, Gang</creator><creator>Zhou, Shuchang</creator><creator>Wang, Yujin</creator><creator>Lv, Wenzhi</creator><creator>Wang, Shili</creator><creator>Wang, Ting</creator><creator>Li, Xiaoming</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200820</creationdate><title>A prediction model of outcome of SARS-CoV-2 pneumonia based on laboratory findings</title><author>Wu, Gang ; Zhou, Shuchang ; Wang, Yujin ; Lv, Wenzhi ; Wang, Shili ; Wang, Ting ; Li, Xiaoming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c527t-ff2720a820ed6c161e084a71dd991a6c82de42774322341bed18ce560c8190be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>692/699/255</topic><topic>692/699/255/2514</topic><topic>Age</topic><topic>Aged</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Betacoronavirus - genetics</topic><topic>Bilirubin - blood</topic><topic>Blood</topic><topic>Blood platelets</topic><topic>Cochlea</topic><topic>Collagen</topic><topic>Coronavirus Infections - blood</topic><topic>Coronavirus Infections - therapy</topic><topic>Coronavirus Infections - virology</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Cytokines</topic><topic>Data Accuracy</topic><topic>Degradation products</topic><topic>Dehydrogenases</topic><topic>Feasibility Studies</topic><topic>Feature selection</topic><topic>Female</topic><topic>Fibrin Fibrinogen Degradation Products - analysis</topic><topic>Forecasting - methods</topic><topic>Hearing</topic><topic>Hospitals</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Infections</topic><topic>Laboratories</topic><topic>Leukocytes</topic><topic>Machine Learning</topic><topic>Male</topic><topic>Mapping</topic><topic>Models, Statistical</topic><topic>Mortality</topic><topic>multidisciplinary</topic><topic>Myoglobin - blood</topic><topic>Myoglobins</topic><topic>Neutrophils</topic><topic>Pandemics</topic><topic>Patients</topic><topic>Pneumonia</topic><topic>Pneumonia, Viral - blood</topic><topic>Pneumonia, Viral - therapy</topic><topic>Pneumonia, Viral - virology</topic><topic>Prediction models</topic><topic>Prognosis</topic><topic>Prothrombin - analysis</topic><topic>Receptors, Interleukin-2 - blood</topic><topic>Retrospective Studies</topic><topic>SARS-CoV-2</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sensitivity and Specificity</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Treatment Outcome</topic><topic>Urea</topic><topic>Urea - blood</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Gang</creatorcontrib><creatorcontrib>Zhou, Shuchang</creatorcontrib><creatorcontrib>Wang, Yujin</creatorcontrib><creatorcontrib>Lv, Wenzhi</creatorcontrib><creatorcontrib>Wang, Shili</creatorcontrib><creatorcontrib>Wang, Ting</creatorcontrib><creatorcontrib>Li, Xiaoming</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Gang</au><au>Zhou, Shuchang</au><au>Wang, Yujin</au><au>Lv, Wenzhi</au><au>Wang, Shili</au><au>Wang, Ting</au><au>Li, Xiaoming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A prediction model of outcome of SARS-CoV-2 pneumonia based on laboratory findings</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-08-20</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>14042</spage><epage>14042</epage><pages>14042-14042</pages><artnum>14042</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in thousands of deaths in the world. Information about prediction model of prognosis of SARS-CoV-2 infection is scarce. We used machine learning for processing laboratory findings of 110 patients with SARS-CoV-2 pneumonia (including 51 non-survivors and 59 discharged patients). The maximum relevance minimum redundancy (mRMR) algorithm and the least absolute shrinkage and selection operator logistic regression model were used for selection of laboratory features. Seven laboratory features selected in the model were: prothrombin activity, urea, white blood cell, interleukin-2 receptor, indirect bilirubin, myoglobin, and fibrinogen degradation products. The signature constructed using the seven features had 98% [93%, 100%] sensitivity and 91% [84%, 99%] specificity in predicting outcome of SARS-CoV-2 pneumonia. Thus it is feasible to establish an accurate prediction model of outcome of SARS-CoV-2 pneumonia based on laboratory findings.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32820210</pmid><doi>10.1038/s41598-020-71114-7</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2020-08, Vol.10 (1), p.14042-14042, Article 14042 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7441177 |
source | Publicly Available Content Database; Full-Text Journals in Chemistry (Open access); PubMed Central; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 692/699/255 692/699/255/2514 Age Aged Algorithms Artificial intelligence Betacoronavirus - genetics Bilirubin - blood Blood Blood platelets Cochlea Collagen Coronavirus Infections - blood Coronavirus Infections - therapy Coronavirus Infections - virology Coronaviruses COVID-19 Cytokines Data Accuracy Degradation products Dehydrogenases Feasibility Studies Feature selection Female Fibrin Fibrinogen Degradation Products - analysis Forecasting - methods Hearing Hospitals Humanities and Social Sciences Humans Infections Laboratories Leukocytes Machine Learning Male Mapping Models, Statistical Mortality multidisciplinary Myoglobin - blood Myoglobins Neutrophils Pandemics Patients Pneumonia Pneumonia, Viral - blood Pneumonia, Viral - therapy Pneumonia, Viral - virology Prediction models Prognosis Prothrombin - analysis Receptors, Interleukin-2 - blood Retrospective Studies SARS-CoV-2 Science Science (multidisciplinary) Sensitivity and Specificity Severe acute respiratory syndrome coronavirus 2 Treatment Outcome Urea Urea - blood |
title | A prediction model of outcome of SARS-CoV-2 pneumonia based on laboratory findings |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T04%3A05%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20prediction%20model%20of%20outcome%20of%20SARS-CoV-2%20pneumonia%20based%20on%20laboratory%20findings&rft.jtitle=Scientific%20reports&rft.au=Wu,%20Gang&rft.date=2020-08-20&rft.volume=10&rft.issue=1&rft.spage=14042&rft.epage=14042&rft.pages=14042-14042&rft.artnum=14042&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-71114-7&rft_dat=%3Cproquest_pubme%3E4322133123%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c527t-ff2720a820ed6c161e084a71dd991a6c82de42774322341bed18ce560c8190be3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1893963165&rft_id=info:pmid/32820210&rfr_iscdi=true |