Loading…

Simulation software for assessment of nonlinear and adaptive multivariable control algorithms: Glucose–insulin dynamics in Type 1 diabetes

A simulator for testing automatic control algorithms for nonlinear systems with time-varying parameters, variable time delays, and uncertainties is developed. It is based on simulation of virtual patients with Type 1 diabetes (T1D). Nonlinear models are developed to describe glucose concentration (G...

Full description

Saved in:
Bibliographic Details
Published in:Computers & chemical engineering 2019-11, Vol.130, p.106565, Article 106565
Main Authors: Rashid, Mudassir, Samadi, Sediqeh, Sevil, Mert, Hajizadeh, Iman, Kolodziej, Paul, Hobbs, Nicole, Maloney, Zacharie, Brandt, Rachel, Feng, Jianyuan, Park, Minsun, Quinn, Laurie, Cinar, Ali
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c520t-5e2445e72c4efd47d19afc7b1e1c43be0be114b18f7d93385c082f1575cde823
cites cdi_FETCH-LOGICAL-c520t-5e2445e72c4efd47d19afc7b1e1c43be0be114b18f7d93385c082f1575cde823
container_end_page
container_issue
container_start_page 106565
container_title Computers & chemical engineering
container_volume 130
creator Rashid, Mudassir
Samadi, Sediqeh
Sevil, Mert
Hajizadeh, Iman
Kolodziej, Paul
Hobbs, Nicole
Maloney, Zacharie
Brandt, Rachel
Feng, Jianyuan
Park, Minsun
Quinn, Laurie
Cinar, Ali
description A simulator for testing automatic control algorithms for nonlinear systems with time-varying parameters, variable time delays, and uncertainties is developed. It is based on simulation of virtual patients with Type 1 diabetes (T1D). Nonlinear models are developed to describe glucose concentration (GC) variations based on user-defined scenarios for meal consumption, insulin administration, and physical activity. They compute GC values and physiological variables, such as heart rate, skin temperature, accelerometer, and energy expenditure, that are indicative of physical activities affecting GC dynamics. This is the first simulator designed for assessment of multivariable controllers that consider supplemental physiological variables in addition to GC measurements to improve glycemic control. Virtual patients are generated from distributions of identified model parameters using clinical data. The simulator will enable testing and evaluation of new control algorithms proposed for automated insulin delivery as well as various control algorithms for nonlinear systems with uncertainties, time-varying parameters and delays.
doi_str_mv 10.1016/j.compchemeng.2019.106565
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7449052</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0098135419307574</els_id><sourcerecordid>2438994559</sourcerecordid><originalsourceid>FETCH-LOGICAL-c520t-5e2445e72c4efd47d19afc7b1e1c43be0be114b18f7d93385c082f1575cde823</originalsourceid><addsrcrecordid>eNqNUb2OEzEQthCICwevgExHs8G_WS8FEorgQDqJgvSW155NHO3awfYGpeMB6HhDngRHOU5HRzWj8fczng-hV5QsKaGrN_uljdPB7mCCsF0yQrs6X8mVfIQWVLW8EbyVj9GCkE41lEtxhZ7lvCeEMKHUU3TFmVpx0bIF-vnVT_Noio8B5ziU7yYBHmLCJmfIuRoUHAccYhh9AFPnwWHjzKH4I-BKrdUkb_oRsI2hpDhiM25j8mU35bf4ZpxtzPD7xy8f8lw1sDsFM3mbce03pwNgil3lQ4H8HD0ZzJjhxV29RpuPHzbrT83tl5vP6_e3jZWMlEYCE0JCy6yAwYnW0c4Mtu0pUCt4D6QHSkVP1dC6jnMlLVFsoLKV1oFi_Bq9u8ge5n4CZ-sfkxn1IfnJpJOOxut_X4Lf6W086laIjsizwOs7gRS_zZCLnny2MI4mQJyzZoKrrhNSdhXaXaA2xZwTDPc2lOhzmHqvH4Spz2HqS5iV-_LhnvfMv-lVwPoCgHqso4eks_UQLDifwBbtov8Pmz-YX7z2</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2438994559</pqid></control><display><type>article</type><title>Simulation software for assessment of nonlinear and adaptive multivariable control algorithms: Glucose–insulin dynamics in Type 1 diabetes</title><source>ScienceDirect Journals</source><creator>Rashid, Mudassir ; Samadi, Sediqeh ; Sevil, Mert ; Hajizadeh, Iman ; Kolodziej, Paul ; Hobbs, Nicole ; Maloney, Zacharie ; Brandt, Rachel ; Feng, Jianyuan ; Park, Minsun ; Quinn, Laurie ; Cinar, Ali</creator><creatorcontrib>Rashid, Mudassir ; Samadi, Sediqeh ; Sevil, Mert ; Hajizadeh, Iman ; Kolodziej, Paul ; Hobbs, Nicole ; Maloney, Zacharie ; Brandt, Rachel ; Feng, Jianyuan ; Park, Minsun ; Quinn, Laurie ; Cinar, Ali</creatorcontrib><description>A simulator for testing automatic control algorithms for nonlinear systems with time-varying parameters, variable time delays, and uncertainties is developed. It is based on simulation of virtual patients with Type 1 diabetes (T1D). Nonlinear models are developed to describe glucose concentration (GC) variations based on user-defined scenarios for meal consumption, insulin administration, and physical activity. They compute GC values and physiological variables, such as heart rate, skin temperature, accelerometer, and energy expenditure, that are indicative of physical activities affecting GC dynamics. This is the first simulator designed for assessment of multivariable controllers that consider supplemental physiological variables in addition to GC measurements to improve glycemic control. Virtual patients are generated from distributions of identified model parameters using clinical data. The simulator will enable testing and evaluation of new control algorithms proposed for automated insulin delivery as well as various control algorithms for nonlinear systems with uncertainties, time-varying parameters and delays.</description><identifier>ISSN: 0098-1354</identifier><identifier>EISSN: 1873-4375</identifier><identifier>DOI: 10.1016/j.compchemeng.2019.106565</identifier><identifier>PMID: 32863472</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Benchmark testbed process ; Biomedical application ; Multivariable simulator ; Nonlinear and adaptive model predictive control ; Time-varying uncertain nonlinear system</subject><ispartof>Computers &amp; chemical engineering, 2019-11, Vol.130, p.106565, Article 106565</ispartof><rights>2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c520t-5e2445e72c4efd47d19afc7b1e1c43be0be114b18f7d93385c082f1575cde823</citedby><cites>FETCH-LOGICAL-c520t-5e2445e72c4efd47d19afc7b1e1c43be0be114b18f7d93385c082f1575cde823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32863472$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rashid, Mudassir</creatorcontrib><creatorcontrib>Samadi, Sediqeh</creatorcontrib><creatorcontrib>Sevil, Mert</creatorcontrib><creatorcontrib>Hajizadeh, Iman</creatorcontrib><creatorcontrib>Kolodziej, Paul</creatorcontrib><creatorcontrib>Hobbs, Nicole</creatorcontrib><creatorcontrib>Maloney, Zacharie</creatorcontrib><creatorcontrib>Brandt, Rachel</creatorcontrib><creatorcontrib>Feng, Jianyuan</creatorcontrib><creatorcontrib>Park, Minsun</creatorcontrib><creatorcontrib>Quinn, Laurie</creatorcontrib><creatorcontrib>Cinar, Ali</creatorcontrib><title>Simulation software for assessment of nonlinear and adaptive multivariable control algorithms: Glucose–insulin dynamics in Type 1 diabetes</title><title>Computers &amp; chemical engineering</title><addtitle>Comput Chem Eng</addtitle><description>A simulator for testing automatic control algorithms for nonlinear systems with time-varying parameters, variable time delays, and uncertainties is developed. It is based on simulation of virtual patients with Type 1 diabetes (T1D). Nonlinear models are developed to describe glucose concentration (GC) variations based on user-defined scenarios for meal consumption, insulin administration, and physical activity. They compute GC values and physiological variables, such as heart rate, skin temperature, accelerometer, and energy expenditure, that are indicative of physical activities affecting GC dynamics. This is the first simulator designed for assessment of multivariable controllers that consider supplemental physiological variables in addition to GC measurements to improve glycemic control. Virtual patients are generated from distributions of identified model parameters using clinical data. The simulator will enable testing and evaluation of new control algorithms proposed for automated insulin delivery as well as various control algorithms for nonlinear systems with uncertainties, time-varying parameters and delays.</description><subject>Benchmark testbed process</subject><subject>Biomedical application</subject><subject>Multivariable simulator</subject><subject>Nonlinear and adaptive model predictive control</subject><subject>Time-varying uncertain nonlinear system</subject><issn>0098-1354</issn><issn>1873-4375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNUb2OEzEQthCICwevgExHs8G_WS8FEorgQDqJgvSW155NHO3awfYGpeMB6HhDngRHOU5HRzWj8fczng-hV5QsKaGrN_uljdPB7mCCsF0yQrs6X8mVfIQWVLW8EbyVj9GCkE41lEtxhZ7lvCeEMKHUU3TFmVpx0bIF-vnVT_Noio8B5ziU7yYBHmLCJmfIuRoUHAccYhh9AFPnwWHjzKH4I-BKrdUkb_oRsI2hpDhiM25j8mU35bf4ZpxtzPD7xy8f8lw1sDsFM3mbce03pwNgil3lQ4H8HD0ZzJjhxV29RpuPHzbrT83tl5vP6_e3jZWMlEYCE0JCy6yAwYnW0c4Mtu0pUCt4D6QHSkVP1dC6jnMlLVFsoLKV1oFi_Bq9u8ge5n4CZ-sfkxn1IfnJpJOOxut_X4Lf6W086laIjsizwOs7gRS_zZCLnny2MI4mQJyzZoKrrhNSdhXaXaA2xZwTDPc2lOhzmHqvH4Spz2HqS5iV-_LhnvfMv-lVwPoCgHqso4eks_UQLDifwBbtov8Pmz-YX7z2</recordid><startdate>20191102</startdate><enddate>20191102</enddate><creator>Rashid, Mudassir</creator><creator>Samadi, Sediqeh</creator><creator>Sevil, Mert</creator><creator>Hajizadeh, Iman</creator><creator>Kolodziej, Paul</creator><creator>Hobbs, Nicole</creator><creator>Maloney, Zacharie</creator><creator>Brandt, Rachel</creator><creator>Feng, Jianyuan</creator><creator>Park, Minsun</creator><creator>Quinn, Laurie</creator><creator>Cinar, Ali</creator><general>Elsevier Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20191102</creationdate><title>Simulation software for assessment of nonlinear and adaptive multivariable control algorithms: Glucose–insulin dynamics in Type 1 diabetes</title><author>Rashid, Mudassir ; Samadi, Sediqeh ; Sevil, Mert ; Hajizadeh, Iman ; Kolodziej, Paul ; Hobbs, Nicole ; Maloney, Zacharie ; Brandt, Rachel ; Feng, Jianyuan ; Park, Minsun ; Quinn, Laurie ; Cinar, Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c520t-5e2445e72c4efd47d19afc7b1e1c43be0be114b18f7d93385c082f1575cde823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Benchmark testbed process</topic><topic>Biomedical application</topic><topic>Multivariable simulator</topic><topic>Nonlinear and adaptive model predictive control</topic><topic>Time-varying uncertain nonlinear system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rashid, Mudassir</creatorcontrib><creatorcontrib>Samadi, Sediqeh</creatorcontrib><creatorcontrib>Sevil, Mert</creatorcontrib><creatorcontrib>Hajizadeh, Iman</creatorcontrib><creatorcontrib>Kolodziej, Paul</creatorcontrib><creatorcontrib>Hobbs, Nicole</creatorcontrib><creatorcontrib>Maloney, Zacharie</creatorcontrib><creatorcontrib>Brandt, Rachel</creatorcontrib><creatorcontrib>Feng, Jianyuan</creatorcontrib><creatorcontrib>Park, Minsun</creatorcontrib><creatorcontrib>Quinn, Laurie</creatorcontrib><creatorcontrib>Cinar, Ali</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computers &amp; chemical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rashid, Mudassir</au><au>Samadi, Sediqeh</au><au>Sevil, Mert</au><au>Hajizadeh, Iman</au><au>Kolodziej, Paul</au><au>Hobbs, Nicole</au><au>Maloney, Zacharie</au><au>Brandt, Rachel</au><au>Feng, Jianyuan</au><au>Park, Minsun</au><au>Quinn, Laurie</au><au>Cinar, Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation software for assessment of nonlinear and adaptive multivariable control algorithms: Glucose–insulin dynamics in Type 1 diabetes</atitle><jtitle>Computers &amp; chemical engineering</jtitle><addtitle>Comput Chem Eng</addtitle><date>2019-11-02</date><risdate>2019</risdate><volume>130</volume><spage>106565</spage><pages>106565-</pages><artnum>106565</artnum><issn>0098-1354</issn><eissn>1873-4375</eissn><abstract>A simulator for testing automatic control algorithms for nonlinear systems with time-varying parameters, variable time delays, and uncertainties is developed. It is based on simulation of virtual patients with Type 1 diabetes (T1D). Nonlinear models are developed to describe glucose concentration (GC) variations based on user-defined scenarios for meal consumption, insulin administration, and physical activity. They compute GC values and physiological variables, such as heart rate, skin temperature, accelerometer, and energy expenditure, that are indicative of physical activities affecting GC dynamics. This is the first simulator designed for assessment of multivariable controllers that consider supplemental physiological variables in addition to GC measurements to improve glycemic control. Virtual patients are generated from distributions of identified model parameters using clinical data. The simulator will enable testing and evaluation of new control algorithms proposed for automated insulin delivery as well as various control algorithms for nonlinear systems with uncertainties, time-varying parameters and delays.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>32863472</pmid><doi>10.1016/j.compchemeng.2019.106565</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0098-1354
ispartof Computers & chemical engineering, 2019-11, Vol.130, p.106565, Article 106565
issn 0098-1354
1873-4375
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7449052
source ScienceDirect Journals
subjects Benchmark testbed process
Biomedical application
Multivariable simulator
Nonlinear and adaptive model predictive control
Time-varying uncertain nonlinear system
title Simulation software for assessment of nonlinear and adaptive multivariable control algorithms: Glucose–insulin dynamics in Type 1 diabetes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T08%3A45%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20software%20for%20assessment%20of%20nonlinear%20and%20adaptive%20multivariable%20control%20algorithms:%20Glucose%E2%80%93insulin%20dynamics%20in%20Type%201%20diabetes&rft.jtitle=Computers%20&%20chemical%20engineering&rft.au=Rashid,%20Mudassir&rft.date=2019-11-02&rft.volume=130&rft.spage=106565&rft.pages=106565-&rft.artnum=106565&rft.issn=0098-1354&rft.eissn=1873-4375&rft_id=info:doi/10.1016/j.compchemeng.2019.106565&rft_dat=%3Cproquest_pubme%3E2438994559%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c520t-5e2445e72c4efd47d19afc7b1e1c43be0be114b18f7d93385c082f1575cde823%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2438994559&rft_id=info:pmid/32863472&rfr_iscdi=true