Loading…

Anatomical context protects deep learning from adversarial perturbations in medical imaging

Deep learning has achieved impressive performance across a variety of tasks, including medical image processing. However, recent research has shown that deep neural networks are susceptible to small adversarial perturbations in the image. We study the impact of such adversarial perturbations in medi...

Full description

Saved in:
Bibliographic Details
Published in:Neurocomputing (Amsterdam) 2020-02, Vol.379, p.370-378
Main Authors: Li, Yi, Zhang, Huahong, Bermudez, Camilo, Chen, Yifan, Landman, Bennett A., Vorobeychik, Yevgeniy
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c463t-e898495d2316525853641b978aff7a8a19dd86476f785fa4a437979321bced03
cites cdi_FETCH-LOGICAL-c463t-e898495d2316525853641b978aff7a8a19dd86476f785fa4a437979321bced03
container_end_page 378
container_issue
container_start_page 370
container_title Neurocomputing (Amsterdam)
container_volume 379
creator Li, Yi
Zhang, Huahong
Bermudez, Camilo
Chen, Yifan
Landman, Bennett A.
Vorobeychik, Yevgeniy
description Deep learning has achieved impressive performance across a variety of tasks, including medical image processing. However, recent research has shown that deep neural networks are susceptible to small adversarial perturbations in the image. We study the impact of such adversarial perturbations in medical image processing where the goal is to predict an individual’s age based on a 3D MRI brain image. We consider two models: a conventional deep neural network, and a hybrid deep learning model which additionally uses features informed by anatomical context. We find that we can introduce significant errors in predicted age by adding imperceptible noise to an image, can accomplish this even for large batches of images using a single perturbation, and that the hybrid model is much more robust to adversarial perturbations than the conventional deep neural network. Our work highlights limitations of current deep learning techniques in clinical applications, and suggests a path forward.
doi_str_mv 10.1016/j.neucom.2019.10.085
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7450534</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925231219315279</els_id><sourcerecordid>2438995346</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-e898495d2316525853641b978aff7a8a19dd86476f785fa4a437979321bced03</originalsourceid><addsrcrecordid>eNp9kU9v1DAQxS1URLeFb4BQjr1k67-xfUGqqkKRKnHpjYPldSaLV4kdbGdFv329bFvg0pOlmTdv3viH0EeC1wST7nK3DrC4OK0pJrqW1liJN2hFlKStoqo7QSusqWgpI_QUneW8w5hIQvU7dMpqnwnFVujHVbAlTt7ZsXExFPhdmjnFAq7kpgeYmxFsCj5smyHFqbH9HlK2yVf9DKksaWOLjyE3PjQT9H-M_GS3deI9ejvYMcOHp_cc3X-5ub--be--f_12fXXXOt6x0oLSimvR16CdoEIJ1nGy0VLZYZBWWaL7XnVcdoNUYrDccia11IySjYMes3P0-Wg7L5uawEEoyY5mTjVGejDRevN_J_ifZhv3RnKBBePV4OLJIMVfC-RiJp8djKMNEJdsKGdK66rsqpQfpS7FnBMML2sINgcsZmeOWMwBy6FasdSxT_9GfBl65vD3Bqj_tPeQTHYeQr3Pp4rC9NG_vuERpXOipQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2438995346</pqid></control><display><type>article</type><title>Anatomical context protects deep learning from adversarial perturbations in medical imaging</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Li, Yi ; Zhang, Huahong ; Bermudez, Camilo ; Chen, Yifan ; Landman, Bennett A. ; Vorobeychik, Yevgeniy</creator><creatorcontrib>Li, Yi ; Zhang, Huahong ; Bermudez, Camilo ; Chen, Yifan ; Landman, Bennett A. ; Vorobeychik, Yevgeniy</creatorcontrib><description>Deep learning has achieved impressive performance across a variety of tasks, including medical image processing. However, recent research has shown that deep neural networks are susceptible to small adversarial perturbations in the image. We study the impact of such adversarial perturbations in medical image processing where the goal is to predict an individual’s age based on a 3D MRI brain image. We consider two models: a conventional deep neural network, and a hybrid deep learning model which additionally uses features informed by anatomical context. We find that we can introduce significant errors in predicted age by adding imperceptible noise to an image, can accomplish this even for large batches of images using a single perturbation, and that the hybrid model is much more robust to adversarial perturbations than the conventional deep neural network. Our work highlights limitations of current deep learning techniques in clinical applications, and suggests a path forward.</description><identifier>ISSN: 0925-2312</identifier><identifier>EISSN: 1872-8286</identifier><identifier>DOI: 10.1016/j.neucom.2019.10.085</identifier><identifier>PMID: 32863583</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Adversarial deep learning ; Medical image processing</subject><ispartof>Neurocomputing (Amsterdam), 2020-02, Vol.379, p.370-378</ispartof><rights>2019 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-e898495d2316525853641b978aff7a8a19dd86476f785fa4a437979321bced03</citedby><cites>FETCH-LOGICAL-c463t-e898495d2316525853641b978aff7a8a19dd86476f785fa4a437979321bced03</cites><orcidid>0000-0001-5733-2127</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32863583$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Yi</creatorcontrib><creatorcontrib>Zhang, Huahong</creatorcontrib><creatorcontrib>Bermudez, Camilo</creatorcontrib><creatorcontrib>Chen, Yifan</creatorcontrib><creatorcontrib>Landman, Bennett A.</creatorcontrib><creatorcontrib>Vorobeychik, Yevgeniy</creatorcontrib><title>Anatomical context protects deep learning from adversarial perturbations in medical imaging</title><title>Neurocomputing (Amsterdam)</title><addtitle>Neurocomputing (Amst)</addtitle><description>Deep learning has achieved impressive performance across a variety of tasks, including medical image processing. However, recent research has shown that deep neural networks are susceptible to small adversarial perturbations in the image. We study the impact of such adversarial perturbations in medical image processing where the goal is to predict an individual’s age based on a 3D MRI brain image. We consider two models: a conventional deep neural network, and a hybrid deep learning model which additionally uses features informed by anatomical context. We find that we can introduce significant errors in predicted age by adding imperceptible noise to an image, can accomplish this even for large batches of images using a single perturbation, and that the hybrid model is much more robust to adversarial perturbations than the conventional deep neural network. Our work highlights limitations of current deep learning techniques in clinical applications, and suggests a path forward.</description><subject>Adversarial deep learning</subject><subject>Medical image processing</subject><issn>0925-2312</issn><issn>1872-8286</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kU9v1DAQxS1URLeFb4BQjr1k67-xfUGqqkKRKnHpjYPldSaLV4kdbGdFv329bFvg0pOlmTdv3viH0EeC1wST7nK3DrC4OK0pJrqW1liJN2hFlKStoqo7QSusqWgpI_QUneW8w5hIQvU7dMpqnwnFVujHVbAlTt7ZsXExFPhdmjnFAq7kpgeYmxFsCj5smyHFqbH9HlK2yVf9DKksaWOLjyE3PjQT9H-M_GS3deI9ejvYMcOHp_cc3X-5ub--be--f_12fXXXOt6x0oLSimvR16CdoEIJ1nGy0VLZYZBWWaL7XnVcdoNUYrDccia11IySjYMes3P0-Wg7L5uawEEoyY5mTjVGejDRevN_J_ifZhv3RnKBBePV4OLJIMVfC-RiJp8djKMNEJdsKGdK66rsqpQfpS7FnBMML2sINgcsZmeOWMwBy6FasdSxT_9GfBl65vD3Bqj_tPeQTHYeQr3Pp4rC9NG_vuERpXOipQ</recordid><startdate>20200228</startdate><enddate>20200228</enddate><creator>Li, Yi</creator><creator>Zhang, Huahong</creator><creator>Bermudez, Camilo</creator><creator>Chen, Yifan</creator><creator>Landman, Bennett A.</creator><creator>Vorobeychik, Yevgeniy</creator><general>Elsevier B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5733-2127</orcidid></search><sort><creationdate>20200228</creationdate><title>Anatomical context protects deep learning from adversarial perturbations in medical imaging</title><author>Li, Yi ; Zhang, Huahong ; Bermudez, Camilo ; Chen, Yifan ; Landman, Bennett A. ; Vorobeychik, Yevgeniy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-e898495d2316525853641b978aff7a8a19dd86476f785fa4a437979321bced03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adversarial deep learning</topic><topic>Medical image processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yi</creatorcontrib><creatorcontrib>Zhang, Huahong</creatorcontrib><creatorcontrib>Bermudez, Camilo</creatorcontrib><creatorcontrib>Chen, Yifan</creatorcontrib><creatorcontrib>Landman, Bennett A.</creatorcontrib><creatorcontrib>Vorobeychik, Yevgeniy</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neurocomputing (Amsterdam)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yi</au><au>Zhang, Huahong</au><au>Bermudez, Camilo</au><au>Chen, Yifan</au><au>Landman, Bennett A.</au><au>Vorobeychik, Yevgeniy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anatomical context protects deep learning from adversarial perturbations in medical imaging</atitle><jtitle>Neurocomputing (Amsterdam)</jtitle><addtitle>Neurocomputing (Amst)</addtitle><date>2020-02-28</date><risdate>2020</risdate><volume>379</volume><spage>370</spage><epage>378</epage><pages>370-378</pages><issn>0925-2312</issn><eissn>1872-8286</eissn><abstract>Deep learning has achieved impressive performance across a variety of tasks, including medical image processing. However, recent research has shown that deep neural networks are susceptible to small adversarial perturbations in the image. We study the impact of such adversarial perturbations in medical image processing where the goal is to predict an individual’s age based on a 3D MRI brain image. We consider two models: a conventional deep neural network, and a hybrid deep learning model which additionally uses features informed by anatomical context. We find that we can introduce significant errors in predicted age by adding imperceptible noise to an image, can accomplish this even for large batches of images using a single perturbation, and that the hybrid model is much more robust to adversarial perturbations than the conventional deep neural network. Our work highlights limitations of current deep learning techniques in clinical applications, and suggests a path forward.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>32863583</pmid><doi>10.1016/j.neucom.2019.10.085</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-5733-2127</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0925-2312
ispartof Neurocomputing (Amsterdam), 2020-02, Vol.379, p.370-378
issn 0925-2312
1872-8286
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7450534
source ScienceDirect Freedom Collection 2022-2024
subjects Adversarial deep learning
Medical image processing
title Anatomical context protects deep learning from adversarial perturbations in medical imaging
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A11%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anatomical%20context%20protects%20deep%20learning%20from%20adversarial%20perturbations%20in%20medical%20imaging&rft.jtitle=Neurocomputing%20(Amsterdam)&rft.au=Li,%20Yi&rft.date=2020-02-28&rft.volume=379&rft.spage=370&rft.epage=378&rft.pages=370-378&rft.issn=0925-2312&rft.eissn=1872-8286&rft_id=info:doi/10.1016/j.neucom.2019.10.085&rft_dat=%3Cproquest_pubme%3E2438995346%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c463t-e898495d2316525853641b978aff7a8a19dd86476f785fa4a437979321bced03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2438995346&rft_id=info:pmid/32863583&rfr_iscdi=true