Loading…
Anatomical context protects deep learning from adversarial perturbations in medical imaging
Deep learning has achieved impressive performance across a variety of tasks, including medical image processing. However, recent research has shown that deep neural networks are susceptible to small adversarial perturbations in the image. We study the impact of such adversarial perturbations in medi...
Saved in:
Published in: | Neurocomputing (Amsterdam) 2020-02, Vol.379, p.370-378 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c463t-e898495d2316525853641b978aff7a8a19dd86476f785fa4a437979321bced03 |
---|---|
cites | cdi_FETCH-LOGICAL-c463t-e898495d2316525853641b978aff7a8a19dd86476f785fa4a437979321bced03 |
container_end_page | 378 |
container_issue | |
container_start_page | 370 |
container_title | Neurocomputing (Amsterdam) |
container_volume | 379 |
creator | Li, Yi Zhang, Huahong Bermudez, Camilo Chen, Yifan Landman, Bennett A. Vorobeychik, Yevgeniy |
description | Deep learning has achieved impressive performance across a variety of tasks, including medical image processing. However, recent research has shown that deep neural networks are susceptible to small adversarial perturbations in the image. We study the impact of such adversarial perturbations in medical image processing where the goal is to predict an individual’s age based on a 3D MRI brain image. We consider two models: a conventional deep neural network, and a hybrid deep learning model which additionally uses features informed by anatomical context. We find that we can introduce significant errors in predicted age by adding imperceptible noise to an image, can accomplish this even for large batches of images using a single perturbation, and that the hybrid model is much more robust to adversarial perturbations than the conventional deep neural network. Our work highlights limitations of current deep learning techniques in clinical applications, and suggests a path forward. |
doi_str_mv | 10.1016/j.neucom.2019.10.085 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7450534</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925231219315279</els_id><sourcerecordid>2438995346</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-e898495d2316525853641b978aff7a8a19dd86476f785fa4a437979321bced03</originalsourceid><addsrcrecordid>eNp9kU9v1DAQxS1URLeFb4BQjr1k67-xfUGqqkKRKnHpjYPldSaLV4kdbGdFv329bFvg0pOlmTdv3viH0EeC1wST7nK3DrC4OK0pJrqW1liJN2hFlKStoqo7QSusqWgpI_QUneW8w5hIQvU7dMpqnwnFVujHVbAlTt7ZsXExFPhdmjnFAq7kpgeYmxFsCj5smyHFqbH9HlK2yVf9DKksaWOLjyE3PjQT9H-M_GS3deI9ejvYMcOHp_cc3X-5ub--be--f_12fXXXOt6x0oLSimvR16CdoEIJ1nGy0VLZYZBWWaL7XnVcdoNUYrDccia11IySjYMes3P0-Wg7L5uawEEoyY5mTjVGejDRevN_J_ifZhv3RnKBBePV4OLJIMVfC-RiJp8djKMNEJdsKGdK66rsqpQfpS7FnBMML2sINgcsZmeOWMwBy6FasdSxT_9GfBl65vD3Bqj_tPeQTHYeQr3Pp4rC9NG_vuERpXOipQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2438995346</pqid></control><display><type>article</type><title>Anatomical context protects deep learning from adversarial perturbations in medical imaging</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Li, Yi ; Zhang, Huahong ; Bermudez, Camilo ; Chen, Yifan ; Landman, Bennett A. ; Vorobeychik, Yevgeniy</creator><creatorcontrib>Li, Yi ; Zhang, Huahong ; Bermudez, Camilo ; Chen, Yifan ; Landman, Bennett A. ; Vorobeychik, Yevgeniy</creatorcontrib><description>Deep learning has achieved impressive performance across a variety of tasks, including medical image processing. However, recent research has shown that deep neural networks are susceptible to small adversarial perturbations in the image. We study the impact of such adversarial perturbations in medical image processing where the goal is to predict an individual’s age based on a 3D MRI brain image. We consider two models: a conventional deep neural network, and a hybrid deep learning model which additionally uses features informed by anatomical context. We find that we can introduce significant errors in predicted age by adding imperceptible noise to an image, can accomplish this even for large batches of images using a single perturbation, and that the hybrid model is much more robust to adversarial perturbations than the conventional deep neural network. Our work highlights limitations of current deep learning techniques in clinical applications, and suggests a path forward.</description><identifier>ISSN: 0925-2312</identifier><identifier>EISSN: 1872-8286</identifier><identifier>DOI: 10.1016/j.neucom.2019.10.085</identifier><identifier>PMID: 32863583</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Adversarial deep learning ; Medical image processing</subject><ispartof>Neurocomputing (Amsterdam), 2020-02, Vol.379, p.370-378</ispartof><rights>2019 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-e898495d2316525853641b978aff7a8a19dd86476f785fa4a437979321bced03</citedby><cites>FETCH-LOGICAL-c463t-e898495d2316525853641b978aff7a8a19dd86476f785fa4a437979321bced03</cites><orcidid>0000-0001-5733-2127</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32863583$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Yi</creatorcontrib><creatorcontrib>Zhang, Huahong</creatorcontrib><creatorcontrib>Bermudez, Camilo</creatorcontrib><creatorcontrib>Chen, Yifan</creatorcontrib><creatorcontrib>Landman, Bennett A.</creatorcontrib><creatorcontrib>Vorobeychik, Yevgeniy</creatorcontrib><title>Anatomical context protects deep learning from adversarial perturbations in medical imaging</title><title>Neurocomputing (Amsterdam)</title><addtitle>Neurocomputing (Amst)</addtitle><description>Deep learning has achieved impressive performance across a variety of tasks, including medical image processing. However, recent research has shown that deep neural networks are susceptible to small adversarial perturbations in the image. We study the impact of such adversarial perturbations in medical image processing where the goal is to predict an individual’s age based on a 3D MRI brain image. We consider two models: a conventional deep neural network, and a hybrid deep learning model which additionally uses features informed by anatomical context. We find that we can introduce significant errors in predicted age by adding imperceptible noise to an image, can accomplish this even for large batches of images using a single perturbation, and that the hybrid model is much more robust to adversarial perturbations than the conventional deep neural network. Our work highlights limitations of current deep learning techniques in clinical applications, and suggests a path forward.</description><subject>Adversarial deep learning</subject><subject>Medical image processing</subject><issn>0925-2312</issn><issn>1872-8286</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kU9v1DAQxS1URLeFb4BQjr1k67-xfUGqqkKRKnHpjYPldSaLV4kdbGdFv329bFvg0pOlmTdv3viH0EeC1wST7nK3DrC4OK0pJrqW1liJN2hFlKStoqo7QSusqWgpI_QUneW8w5hIQvU7dMpqnwnFVujHVbAlTt7ZsXExFPhdmjnFAq7kpgeYmxFsCj5smyHFqbH9HlK2yVf9DKksaWOLjyE3PjQT9H-M_GS3deI9ejvYMcOHp_cc3X-5ub--be--f_12fXXXOt6x0oLSimvR16CdoEIJ1nGy0VLZYZBWWaL7XnVcdoNUYrDccia11IySjYMes3P0-Wg7L5uawEEoyY5mTjVGejDRevN_J_ifZhv3RnKBBePV4OLJIMVfC-RiJp8djKMNEJdsKGdK66rsqpQfpS7FnBMML2sINgcsZmeOWMwBy6FasdSxT_9GfBl65vD3Bqj_tPeQTHYeQr3Pp4rC9NG_vuERpXOipQ</recordid><startdate>20200228</startdate><enddate>20200228</enddate><creator>Li, Yi</creator><creator>Zhang, Huahong</creator><creator>Bermudez, Camilo</creator><creator>Chen, Yifan</creator><creator>Landman, Bennett A.</creator><creator>Vorobeychik, Yevgeniy</creator><general>Elsevier B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5733-2127</orcidid></search><sort><creationdate>20200228</creationdate><title>Anatomical context protects deep learning from adversarial perturbations in medical imaging</title><author>Li, Yi ; Zhang, Huahong ; Bermudez, Camilo ; Chen, Yifan ; Landman, Bennett A. ; Vorobeychik, Yevgeniy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-e898495d2316525853641b978aff7a8a19dd86476f785fa4a437979321bced03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adversarial deep learning</topic><topic>Medical image processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yi</creatorcontrib><creatorcontrib>Zhang, Huahong</creatorcontrib><creatorcontrib>Bermudez, Camilo</creatorcontrib><creatorcontrib>Chen, Yifan</creatorcontrib><creatorcontrib>Landman, Bennett A.</creatorcontrib><creatorcontrib>Vorobeychik, Yevgeniy</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neurocomputing (Amsterdam)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yi</au><au>Zhang, Huahong</au><au>Bermudez, Camilo</au><au>Chen, Yifan</au><au>Landman, Bennett A.</au><au>Vorobeychik, Yevgeniy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anatomical context protects deep learning from adversarial perturbations in medical imaging</atitle><jtitle>Neurocomputing (Amsterdam)</jtitle><addtitle>Neurocomputing (Amst)</addtitle><date>2020-02-28</date><risdate>2020</risdate><volume>379</volume><spage>370</spage><epage>378</epage><pages>370-378</pages><issn>0925-2312</issn><eissn>1872-8286</eissn><abstract>Deep learning has achieved impressive performance across a variety of tasks, including medical image processing. However, recent research has shown that deep neural networks are susceptible to small adversarial perturbations in the image. We study the impact of such adversarial perturbations in medical image processing where the goal is to predict an individual’s age based on a 3D MRI brain image. We consider two models: a conventional deep neural network, and a hybrid deep learning model which additionally uses features informed by anatomical context. We find that we can introduce significant errors in predicted age by adding imperceptible noise to an image, can accomplish this even for large batches of images using a single perturbation, and that the hybrid model is much more robust to adversarial perturbations than the conventional deep neural network. Our work highlights limitations of current deep learning techniques in clinical applications, and suggests a path forward.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>32863583</pmid><doi>10.1016/j.neucom.2019.10.085</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-5733-2127</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-2312 |
ispartof | Neurocomputing (Amsterdam), 2020-02, Vol.379, p.370-378 |
issn | 0925-2312 1872-8286 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7450534 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Adversarial deep learning Medical image processing |
title | Anatomical context protects deep learning from adversarial perturbations in medical imaging |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A11%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anatomical%20context%20protects%20deep%20learning%20from%20adversarial%20perturbations%20in%20medical%20imaging&rft.jtitle=Neurocomputing%20(Amsterdam)&rft.au=Li,%20Yi&rft.date=2020-02-28&rft.volume=379&rft.spage=370&rft.epage=378&rft.pages=370-378&rft.issn=0925-2312&rft.eissn=1872-8286&rft_id=info:doi/10.1016/j.neucom.2019.10.085&rft_dat=%3Cproquest_pubme%3E2438995346%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c463t-e898495d2316525853641b978aff7a8a19dd86476f785fa4a437979321bced03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2438995346&rft_id=info:pmid/32863583&rfr_iscdi=true |