Loading…

Extracellular DNA Promotes Efficient Extracellular Electron Transfer by Pyocyanin in Pseudomonas aeruginosa Biofilms

Redox cycling of extracellular electron shuttles can enable the metabolic activity of subpopulations within multicellular bacterial biofilms that lack direct access to electron acceptors or donors. How these shuttles catalyze extracellular electron transfer (EET) within biofilms without being lost t...

Full description

Saved in:
Bibliographic Details
Published in:Cell 2020-08, Vol.182 (4), p.919-932.e19
Main Authors: Saunders, Scott H., Tse, Edmund C.M., Yates, Matthew D., Otero, Fernanda Jiménez, Trammell, Scott A., Stemp, Eric D.A., Barton, Jacqueline K., Tender, Leonard M., Newman, Dianne K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c455t-28320d264eb1da8c7c88a0dbeb909123c0755fcceab3fb242c9c024e4309658b3
cites cdi_FETCH-LOGICAL-c455t-28320d264eb1da8c7c88a0dbeb909123c0755fcceab3fb242c9c024e4309658b3
container_end_page 932.e19
container_issue 4
container_start_page 919
container_title Cell
container_volume 182
creator Saunders, Scott H.
Tse, Edmund C.M.
Yates, Matthew D.
Otero, Fernanda Jiménez
Trammell, Scott A.
Stemp, Eric D.A.
Barton, Jacqueline K.
Tender, Leonard M.
Newman, Dianne K.
description Redox cycling of extracellular electron shuttles can enable the metabolic activity of subpopulations within multicellular bacterial biofilms that lack direct access to electron acceptors or donors. How these shuttles catalyze extracellular electron transfer (EET) within biofilms without being lost to the environment has been a long-standing question. Here, we show that phenazines mediate efficient EET through interactions with extracellular DNA (eDNA) in Pseudomonas aeruginosa biofilms. Retention of pyocyanin (PYO) and phenazine carboxamide in the biofilm matrix is facilitated by eDNA binding. In vitro, different phenazines can exchange electrons in the presence or absence of DNA and can participate directly in redox reactions through DNA. In vivo, biofilm eDNA can also support rapid electron transfer between redox active intercalators. Together, these results establish that PYO:eDNA interactions support an efficient redox cycle with rapid EET that is faster than the rate of PYO loss from the biofilm. [Display omitted] •PYO and PCN bind extracellular DNA, which facilitates their retention in biofilms•Electrode biofilms support fast PYO electron transfer and slow PYO loss•Phenazines rapidly exchange electrons and are capable of DNA charge transfer in vitro Phenazines are retained in biofilms through binding to extracellular DNA, and together these biofilm components mediate efficient extracellular electron transfer to support bacterial metabolism
doi_str_mv 10.1016/j.cell.2020.07.006
format article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7457544</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0092867420308710</els_id><sourcerecordid>32763156</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-28320d264eb1da8c7c88a0dbeb909123c0755fcceab3fb242c9c024e4309658b3</originalsourceid><addsrcrecordid>eNp9kd1K7DAUhYMc0fHnBbw45AVad9KkaUEEj2f8AdG50OuQprueDJ1Gko6ceXtTRkVvhMC-yFrfZq9FyAmDnAErT5e5xb7POXDIQeUA5Q6ZMahVJpjiv8gMoOZZVSqxTw5iXAJAJaXcI_sFV2XBZDkj4_z_GMzEWfcm0L_3F3QR_MqPGOm865x1OIz0u2jeox2DH-hjMEPsMNBmQxcbbzdmcANNbxFx3SbKYCI1GNbPbvDR0D_Od65fxSOy25k-4vH7PCRPV_PHy5vs7uH69vLiLrNCyjHjVcGh5aXAhrWmsspWlYG2waaGmvHCgpKysxZNU3QNF9zWFrhAUUBdyqopDsn5lvuyblbY2nRKML1-CW5lwkZ74_T3n8H908_-VSshlRQiAfgWYIOPMWD36WWgpw70Uk-x6KkDDUqnDpLp99etn5aP0JPgbCvAdPurw6DjFLPF1oWUrG69-4n_BtLCnDY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Extracellular DNA Promotes Efficient Extracellular Electron Transfer by Pyocyanin in Pseudomonas aeruginosa Biofilms</title><source>Elsevier ScienceDirect Journals</source><creator>Saunders, Scott H. ; Tse, Edmund C.M. ; Yates, Matthew D. ; Otero, Fernanda Jiménez ; Trammell, Scott A. ; Stemp, Eric D.A. ; Barton, Jacqueline K. ; Tender, Leonard M. ; Newman, Dianne K.</creator><creatorcontrib>Saunders, Scott H. ; Tse, Edmund C.M. ; Yates, Matthew D. ; Otero, Fernanda Jiménez ; Trammell, Scott A. ; Stemp, Eric D.A. ; Barton, Jacqueline K. ; Tender, Leonard M. ; Newman, Dianne K.</creatorcontrib><description>Redox cycling of extracellular electron shuttles can enable the metabolic activity of subpopulations within multicellular bacterial biofilms that lack direct access to electron acceptors or donors. How these shuttles catalyze extracellular electron transfer (EET) within biofilms without being lost to the environment has been a long-standing question. Here, we show that phenazines mediate efficient EET through interactions with extracellular DNA (eDNA) in Pseudomonas aeruginosa biofilms. Retention of pyocyanin (PYO) and phenazine carboxamide in the biofilm matrix is facilitated by eDNA binding. In vitro, different phenazines can exchange electrons in the presence or absence of DNA and can participate directly in redox reactions through DNA. In vivo, biofilm eDNA can also support rapid electron transfer between redox active intercalators. Together, these results establish that PYO:eDNA interactions support an efficient redox cycle with rapid EET that is faster than the rate of PYO loss from the biofilm. [Display omitted] •PYO and PCN bind extracellular DNA, which facilitates their retention in biofilms•Electrode biofilms support fast PYO electron transfer and slow PYO loss•Phenazines rapidly exchange electrons and are capable of DNA charge transfer in vitro Phenazines are retained in biofilms through binding to extracellular DNA, and together these biofilm components mediate efficient extracellular electron transfer to support bacterial metabolism</description><identifier>ISSN: 0092-8674</identifier><identifier>EISSN: 1097-4172</identifier><identifier>DOI: 10.1016/j.cell.2020.07.006</identifier><identifier>PMID: 32763156</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>bacterial metabolism ; biofilm ; biofilm matrix ; Biofilms - growth &amp; development ; DNA - chemistry ; DNA - metabolism ; DNA charge transfer ; Electrochemical Techniques ; Electrodes ; Electron Transport - drug effects ; extracellular DNA ; extracellular electron transfer ; Fluorescent Dyes - chemistry ; Hydrogen-Ion Concentration ; Oxidation-Reduction ; phenazine ; Phenazines - chemistry ; Phenazines - metabolism ; Phenazines - pharmacology ; Pseudomonas aeruginosa ; Pseudomonas aeruginosa - physiology ; pyocyanin ; Pyocyanine - chemistry ; Pyocyanine - metabolism</subject><ispartof>Cell, 2020-08, Vol.182 (4), p.919-932.e19</ispartof><rights>2020 Elsevier Inc.</rights><rights>Copyright © 2020 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-28320d264eb1da8c7c88a0dbeb909123c0755fcceab3fb242c9c024e4309658b3</citedby><cites>FETCH-LOGICAL-c455t-28320d264eb1da8c7c88a0dbeb909123c0755fcceab3fb242c9c024e4309658b3</cites><orcidid>0000-0003-4373-3864 ; 0000-0002-9313-1290 ; 0000-0002-7996-590X ; 0000-0003-2098-4214 ; 0000-0001-9883-1600</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0092867420308710$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3549,27924,27925,45780</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32763156$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Saunders, Scott H.</creatorcontrib><creatorcontrib>Tse, Edmund C.M.</creatorcontrib><creatorcontrib>Yates, Matthew D.</creatorcontrib><creatorcontrib>Otero, Fernanda Jiménez</creatorcontrib><creatorcontrib>Trammell, Scott A.</creatorcontrib><creatorcontrib>Stemp, Eric D.A.</creatorcontrib><creatorcontrib>Barton, Jacqueline K.</creatorcontrib><creatorcontrib>Tender, Leonard M.</creatorcontrib><creatorcontrib>Newman, Dianne K.</creatorcontrib><title>Extracellular DNA Promotes Efficient Extracellular Electron Transfer by Pyocyanin in Pseudomonas aeruginosa Biofilms</title><title>Cell</title><addtitle>Cell</addtitle><description>Redox cycling of extracellular electron shuttles can enable the metabolic activity of subpopulations within multicellular bacterial biofilms that lack direct access to electron acceptors or donors. How these shuttles catalyze extracellular electron transfer (EET) within biofilms without being lost to the environment has been a long-standing question. Here, we show that phenazines mediate efficient EET through interactions with extracellular DNA (eDNA) in Pseudomonas aeruginosa biofilms. Retention of pyocyanin (PYO) and phenazine carboxamide in the biofilm matrix is facilitated by eDNA binding. In vitro, different phenazines can exchange electrons in the presence or absence of DNA and can participate directly in redox reactions through DNA. In vivo, biofilm eDNA can also support rapid electron transfer between redox active intercalators. Together, these results establish that PYO:eDNA interactions support an efficient redox cycle with rapid EET that is faster than the rate of PYO loss from the biofilm. [Display omitted] •PYO and PCN bind extracellular DNA, which facilitates their retention in biofilms•Electrode biofilms support fast PYO electron transfer and slow PYO loss•Phenazines rapidly exchange electrons and are capable of DNA charge transfer in vitro Phenazines are retained in biofilms through binding to extracellular DNA, and together these biofilm components mediate efficient extracellular electron transfer to support bacterial metabolism</description><subject>bacterial metabolism</subject><subject>biofilm</subject><subject>biofilm matrix</subject><subject>Biofilms - growth &amp; development</subject><subject>DNA - chemistry</subject><subject>DNA - metabolism</subject><subject>DNA charge transfer</subject><subject>Electrochemical Techniques</subject><subject>Electrodes</subject><subject>Electron Transport - drug effects</subject><subject>extracellular DNA</subject><subject>extracellular electron transfer</subject><subject>Fluorescent Dyes - chemistry</subject><subject>Hydrogen-Ion Concentration</subject><subject>Oxidation-Reduction</subject><subject>phenazine</subject><subject>Phenazines - chemistry</subject><subject>Phenazines - metabolism</subject><subject>Phenazines - pharmacology</subject><subject>Pseudomonas aeruginosa</subject><subject>Pseudomonas aeruginosa - physiology</subject><subject>pyocyanin</subject><subject>Pyocyanine - chemistry</subject><subject>Pyocyanine - metabolism</subject><issn>0092-8674</issn><issn>1097-4172</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kd1K7DAUhYMc0fHnBbw45AVad9KkaUEEj2f8AdG50OuQprueDJ1Gko6ceXtTRkVvhMC-yFrfZq9FyAmDnAErT5e5xb7POXDIQeUA5Q6ZMahVJpjiv8gMoOZZVSqxTw5iXAJAJaXcI_sFV2XBZDkj4_z_GMzEWfcm0L_3F3QR_MqPGOm865x1OIz0u2jeox2DH-hjMEPsMNBmQxcbbzdmcANNbxFx3SbKYCI1GNbPbvDR0D_Od65fxSOy25k-4vH7PCRPV_PHy5vs7uH69vLiLrNCyjHjVcGh5aXAhrWmsspWlYG2waaGmvHCgpKysxZNU3QNF9zWFrhAUUBdyqopDsn5lvuyblbY2nRKML1-CW5lwkZ74_T3n8H908_-VSshlRQiAfgWYIOPMWD36WWgpw70Uk-x6KkDDUqnDpLp99etn5aP0JPgbCvAdPurw6DjFLPF1oWUrG69-4n_BtLCnDY</recordid><startdate>20200820</startdate><enddate>20200820</enddate><creator>Saunders, Scott H.</creator><creator>Tse, Edmund C.M.</creator><creator>Yates, Matthew D.</creator><creator>Otero, Fernanda Jiménez</creator><creator>Trammell, Scott A.</creator><creator>Stemp, Eric D.A.</creator><creator>Barton, Jacqueline K.</creator><creator>Tender, Leonard M.</creator><creator>Newman, Dianne K.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4373-3864</orcidid><orcidid>https://orcid.org/0000-0002-9313-1290</orcidid><orcidid>https://orcid.org/0000-0002-7996-590X</orcidid><orcidid>https://orcid.org/0000-0003-2098-4214</orcidid><orcidid>https://orcid.org/0000-0001-9883-1600</orcidid></search><sort><creationdate>20200820</creationdate><title>Extracellular DNA Promotes Efficient Extracellular Electron Transfer by Pyocyanin in Pseudomonas aeruginosa Biofilms</title><author>Saunders, Scott H. ; Tse, Edmund C.M. ; Yates, Matthew D. ; Otero, Fernanda Jiménez ; Trammell, Scott A. ; Stemp, Eric D.A. ; Barton, Jacqueline K. ; Tender, Leonard M. ; Newman, Dianne K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-28320d264eb1da8c7c88a0dbeb909123c0755fcceab3fb242c9c024e4309658b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>bacterial metabolism</topic><topic>biofilm</topic><topic>biofilm matrix</topic><topic>Biofilms - growth &amp; development</topic><topic>DNA - chemistry</topic><topic>DNA - metabolism</topic><topic>DNA charge transfer</topic><topic>Electrochemical Techniques</topic><topic>Electrodes</topic><topic>Electron Transport - drug effects</topic><topic>extracellular DNA</topic><topic>extracellular electron transfer</topic><topic>Fluorescent Dyes - chemistry</topic><topic>Hydrogen-Ion Concentration</topic><topic>Oxidation-Reduction</topic><topic>phenazine</topic><topic>Phenazines - chemistry</topic><topic>Phenazines - metabolism</topic><topic>Phenazines - pharmacology</topic><topic>Pseudomonas aeruginosa</topic><topic>Pseudomonas aeruginosa - physiology</topic><topic>pyocyanin</topic><topic>Pyocyanine - chemistry</topic><topic>Pyocyanine - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saunders, Scott H.</creatorcontrib><creatorcontrib>Tse, Edmund C.M.</creatorcontrib><creatorcontrib>Yates, Matthew D.</creatorcontrib><creatorcontrib>Otero, Fernanda Jiménez</creatorcontrib><creatorcontrib>Trammell, Scott A.</creatorcontrib><creatorcontrib>Stemp, Eric D.A.</creatorcontrib><creatorcontrib>Barton, Jacqueline K.</creatorcontrib><creatorcontrib>Tender, Leonard M.</creatorcontrib><creatorcontrib>Newman, Dianne K.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saunders, Scott H.</au><au>Tse, Edmund C.M.</au><au>Yates, Matthew D.</au><au>Otero, Fernanda Jiménez</au><au>Trammell, Scott A.</au><au>Stemp, Eric D.A.</au><au>Barton, Jacqueline K.</au><au>Tender, Leonard M.</au><au>Newman, Dianne K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extracellular DNA Promotes Efficient Extracellular Electron Transfer by Pyocyanin in Pseudomonas aeruginosa Biofilms</atitle><jtitle>Cell</jtitle><addtitle>Cell</addtitle><date>2020-08-20</date><risdate>2020</risdate><volume>182</volume><issue>4</issue><spage>919</spage><epage>932.e19</epage><pages>919-932.e19</pages><issn>0092-8674</issn><eissn>1097-4172</eissn><abstract>Redox cycling of extracellular electron shuttles can enable the metabolic activity of subpopulations within multicellular bacterial biofilms that lack direct access to electron acceptors or donors. How these shuttles catalyze extracellular electron transfer (EET) within biofilms without being lost to the environment has been a long-standing question. Here, we show that phenazines mediate efficient EET through interactions with extracellular DNA (eDNA) in Pseudomonas aeruginosa biofilms. Retention of pyocyanin (PYO) and phenazine carboxamide in the biofilm matrix is facilitated by eDNA binding. In vitro, different phenazines can exchange electrons in the presence or absence of DNA and can participate directly in redox reactions through DNA. In vivo, biofilm eDNA can also support rapid electron transfer between redox active intercalators. Together, these results establish that PYO:eDNA interactions support an efficient redox cycle with rapid EET that is faster than the rate of PYO loss from the biofilm. [Display omitted] •PYO and PCN bind extracellular DNA, which facilitates their retention in biofilms•Electrode biofilms support fast PYO electron transfer and slow PYO loss•Phenazines rapidly exchange electrons and are capable of DNA charge transfer in vitro Phenazines are retained in biofilms through binding to extracellular DNA, and together these biofilm components mediate efficient extracellular electron transfer to support bacterial metabolism</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>32763156</pmid><doi>10.1016/j.cell.2020.07.006</doi><orcidid>https://orcid.org/0000-0003-4373-3864</orcidid><orcidid>https://orcid.org/0000-0002-9313-1290</orcidid><orcidid>https://orcid.org/0000-0002-7996-590X</orcidid><orcidid>https://orcid.org/0000-0003-2098-4214</orcidid><orcidid>https://orcid.org/0000-0001-9883-1600</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0092-8674
ispartof Cell, 2020-08, Vol.182 (4), p.919-932.e19
issn 0092-8674
1097-4172
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7457544
source Elsevier ScienceDirect Journals
subjects bacterial metabolism
biofilm
biofilm matrix
Biofilms - growth & development
DNA - chemistry
DNA - metabolism
DNA charge transfer
Electrochemical Techniques
Electrodes
Electron Transport - drug effects
extracellular DNA
extracellular electron transfer
Fluorescent Dyes - chemistry
Hydrogen-Ion Concentration
Oxidation-Reduction
phenazine
Phenazines - chemistry
Phenazines - metabolism
Phenazines - pharmacology
Pseudomonas aeruginosa
Pseudomonas aeruginosa - physiology
pyocyanin
Pyocyanine - chemistry
Pyocyanine - metabolism
title Extracellular DNA Promotes Efficient Extracellular Electron Transfer by Pyocyanin in Pseudomonas aeruginosa Biofilms
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T03%3A25%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extracellular%20DNA%20Promotes%20Efficient%20Extracellular%20Electron%20Transfer%20by%20Pyocyanin%20in%20Pseudomonas%20aeruginosa%20Biofilms&rft.jtitle=Cell&rft.au=Saunders,%20Scott%20H.&rft.date=2020-08-20&rft.volume=182&rft.issue=4&rft.spage=919&rft.epage=932.e19&rft.pages=919-932.e19&rft.issn=0092-8674&rft.eissn=1097-4172&rft_id=info:doi/10.1016/j.cell.2020.07.006&rft_dat=%3Cpubmed_cross%3E32763156%3C/pubmed_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c455t-28320d264eb1da8c7c88a0dbeb909123c0755fcceab3fb242c9c024e4309658b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/32763156&rfr_iscdi=true