Loading…
Exercise- and Cold-Induced Human PGC-1α mRNA Isoform Specific Responses
Cold exposure in conjunction with aerobic exercise stimulates gene expression of PGC-1α, the master regulator of mitochondrial biogenesis. PGC-1α can be expressed as multiple isoforms due to alternative splicing mechanisms. Among these isoforms is NT-PGC-1α, which produces a truncated form of the PG...
Saved in:
Published in: | International journal of environmental research and public health 2020-08, Vol.17 (16), p.5740 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Cold exposure in conjunction with aerobic exercise stimulates gene expression of PGC-1α, the master regulator of mitochondrial biogenesis. PGC-1α can be expressed as multiple isoforms due to alternative splicing mechanisms. Among these isoforms is NT-PGC-1α, which produces a truncated form of the PGC-1α protein, as well as isoforms derived from the first exon of the transcript, PGC-1α-a, PGC-1α-b, and PGC-1α-c. Relatively little is known about the individual responses of these isoforms to exercise and environmental temperature. Therefore, we determined the expression of PGC-1α isoforms following an acute bout of cycling in cold (C) and room temperature (RT) conditions. Nine male participants cycled for 1h at 65% Wmax at −2 °C and 20 °C. A muscle biopsy was taken from the vastus lateralis before and 3h post-exercise. RT-qPCR was used to analyze gene expression of PGC-1α isoforms. Gene expression of all PGC-1α isoforms increased due to the exercise intervention (p < 0.05). Exercise and cold exposure induced a greater increase in gene expression for total PGC-1α (p = 0.028) and its truncated isoform, NT-PGC-1α (p = 0.034), but there was no temperature-dependent response in the other PGC-1α isoforms measured. It appears that NT-PGC-1α may have a significant contribution to the reported alterations in the exercise- and temperature-induced PGC-1α response. |
---|---|
ISSN: | 1660-4601 1661-7827 1660-4601 |
DOI: | 10.3390/ijerph17165740 |