Loading…

Classification of Coronavirus (COVID‐19) from X‐ray and CT images using shrunken features

Necessary screenings must be performed to control the spread of the COVID‐19 in daily life and to make a preliminary diagnosis of suspicious cases. The long duration of pathological laboratory tests and the suspicious test results led the researchers to focus on different fields. Fast and accurate d...

Full description

Saved in:
Bibliographic Details
Published in:International Journal of Imaging Systems and Technology 2021-03, Vol.31 (1), p.5-15
Main Authors: Öztürk, Şaban, Özkaya, Umut, Barstuğan, Mücahid
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Necessary screenings must be performed to control the spread of the COVID‐19 in daily life and to make a preliminary diagnosis of suspicious cases. The long duration of pathological laboratory tests and the suspicious test results led the researchers to focus on different fields. Fast and accurate diagnoses are essential for effective interventions for COVID‐19. The information obtained by using X‐ray and Computed Tomography (CT) images is vital in making clinical diagnoses. Therefore it is aimed to develop a machine learning method for the detection of viral epidemics by analyzing X‐ray and CT images. In this study, images belonging to six situations, including coronavirus images, are classified using a two‐stage data enhancement approach. Since the number of images in the dataset is deficient and unbalanced, a shallow image augmentation approach was used in the first phase. It is more convenient to analyze these images with hand‐crafted feature extraction methods because the dataset newly created is still insufficient to train a deep architecture. Therefore, the Synthetic minority over‐sampling technique algorithm is the second data enhancement step of this study. Finally, the feature vector is reduced in size by using a stacked auto‐encoder and principal component analysis methods to remove interconnected features in the feature vector. According to the obtained results, it is seen that the proposed method has leveraging performance, especially to make the diagnosis of COVID‐19 in a short time and effectively. Also, it is thought to be a source of inspiration for future studies for deficient and unbalanced datasets.
ISSN:0899-9457
1098-1098
DOI:10.1002/ima.22469