Loading…

Biopolymeric Membrane Enriched with Chitosan and Silver for Metallic Ions Removal

The present paper synthesized, characterized, and evaluated the performance of the novel biopolymeric membrane enriched with cellulose acetate and chitosan (CHI)-silver (Ag) ions in order to remove iron ion from the synthetic wastewater using a new electrodialysis system. The prepared membranes were...

Full description

Saved in:
Bibliographic Details
Published in:Polymers 2020-08, Vol.12 (8), p.1792
Main Authors: Căprărescu, Simona, Zgârian, Roxana Gabriela, Tihan, Graţiela Teodora, Purcar, Violeta, Eftimie Totu, Eugenia, Modrogan, Cristina, Chiriac, Anita-Laura, Nicolae, Cristian Andi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The present paper synthesized, characterized, and evaluated the performance of the novel biopolymeric membrane enriched with cellulose acetate and chitosan (CHI)-silver (Ag) ions in order to remove iron ion from the synthetic wastewater using a new electrodialysis system. The prepared membranes were characterized by Fourier Transforms Infrared Spectroscopy-Attenuated Total Reflection (FTIR-ATR), Thermal Gravimetric Analysis (TGA) and Differential Thermal Analysis (DSC), contact angle measurements, microscopy studies, and electrochemical impedance spectroscopy (EIS). The electrodialysis experiments were performed at the different applied voltages (5, 10, and 15 V) for one hour, at room temperature. The treatment rate (TE) of iron ions, current efficiency (IE), and energy consumption (Wc) were calculated. FTIR-ATR spectra evidenced that incorporation of CHI-Ag ions into the polymer mixture led to a polymer-metal ion complex formation within the membrane. The TGA-DSC analysis for the obtained biopolymeric membranes showed excellent thermal stability (>350 °C). The contact angle measurements demonstrated the hydrophobic character of the polymeric membrane and a decrease of it by CHI-Ag adding. The EIS results indicated that the silver ions induced a higher ionic electrical conductivity. The highest value of the iron ions treatment rate (>60%) was obtained for the biopolymeric membrane with CHI-Ag ions at applied voltage of 15 V.
ISSN:2073-4360
2073-4360
DOI:10.3390/polym12081792