Loading…
Invasive versus non‐invasive mapping of the motor cortex
Precise and comprehensive mapping of somatotopic representations in the motor cortex is clinically essential to achieve maximum resection of brain tumours whilst preserving motor function, especially since the current gold standard, that is, intraoperative direct cortical stimulation (DCS), holds li...
Saved in:
Published in: | Human brain mapping 2020-10, Vol.41 (14), p.3970-3983 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5101-66038064c7d822ebc773acd1f3cae6280122add7a3b7c8a66dd0a5757cdbbfe03 |
---|---|
cites | cdi_FETCH-LOGICAL-c5101-66038064c7d822ebc773acd1f3cae6280122add7a3b7c8a66dd0a5757cdbbfe03 |
container_end_page | 3983 |
container_issue | 14 |
container_start_page | 3970 |
container_title | Human brain mapping |
container_volume | 41 |
creator | Weiss Lucas, Carolin Nettekoven, Charlotte Neuschmelting, Volker Oros‐Peusquens, Ana‐Maria Stoffels, Gabriele Viswanathan, Shivakumar Rehme, Anne K. Faymonville, Andrea Maria Shah, N. Jon Langen, Karl Josef Goldbrunner, Roland Grefkes, Christian |
description | Precise and comprehensive mapping of somatotopic representations in the motor cortex is clinically essential to achieve maximum resection of brain tumours whilst preserving motor function, especially since the current gold standard, that is, intraoperative direct cortical stimulation (DCS), holds limitations linked to the intraoperative setting such as time constraints or anatomical restrictions. Non‐invasive techniques are increasingly relevant with regard to pre‐operative risk‐assessment. Here, we assessed the congruency of neuronavigated transcranial magnetic stimulation (nTMS) and functional magnetic resonance imaging (fMRI) with DCS. The motor representations of the hand, the foot and the tongue regions of 36 patients with intracranial tumours were mapped pre‐operatively using nTMS and fMRI and by intraoperative DCS. Euclidean distances (ED) between hotspots/centres of gravity and (relative) overlaps of the maps were compared. We found significantly smaller EDs (11.4 ± 8.3 vs. 16.8 ± 7.0 mm) and better spatial overlaps (64 ± 38% vs. 37 ± 37%) between DCS and nTMS compared with DCS and fMRI. In contrast to DCS, fMRI and nTMS mappings were feasible for all regions and patients without complications. In summary, nTMS seems to be the more promising non‐invasive motor cortex mapping technique to approximate the gold standard DCS results.
The motor representations of the hand, the foot and the tongue regions were mapped pre‐operatively using neuronavigated transcranial magnetic stimulation (nTMS) and functional magnetic resonance imaging (fMRI) in thirty six patients with intracranial tumours and were compared with intraoperative direct cortex stimulation (DCS). We found significantly smaller Euclidean distances and better spatial overlaps between DCS and nTMS compared with DCS and fMRI. In summary, nTMS seems to be the more promising non‐invasive motor cortex mapping technique to approximate the gold standard DCS results. |
doi_str_mv | 10.1002/hbm.25101 |
format | article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7469817</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A710612816</galeid><sourcerecordid>A710612816</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5101-66038064c7d822ebc773acd1f3cae6280122add7a3b7c8a66dd0a5757cdbbfe03</originalsourceid><addsrcrecordid>eNp1kUtuFDEQhi1EREJgwQVQS2zIoicue_xoFpFCBEmkIDawtty2e8ZRtz3Y3QPZ5QickZPgyeRBEMgL2-Wv_nLVj9ArwDPAmBwu22FGGGB4gvYAN6LG0NCnmzNndTMXsIue53yJMQDD8AztUsKkbCjfQ-_Ow1pnv3bV2qU85SrE8Ov6p7-LDnq18mFRxa4al-Uax5gqE9PofrxAO53us3t5u--jrx8_fDk5qy8-n56fHF_UZvOlmnNMJeZzI6wkxLVGCKqNhY4a7TiRGAjR1gpNW2Gk5txarJlgwti27Rym--hoq7ua2sFZ48KYdK9WyQ86XamovXr8EvxSLeJaiTlvJIgi8PZWIMVvk8ujGnw2ru91cHHKisxBAqUY04K--Qu9jFMKpb1C0YY1nDH2QC1075QPXSx1zUZUHYsydCASeKFm_6DKsm7wJgbX-RJ_lHCwTTAp5pxcd98jYLUxWhWj1Y3RhX3951DuyTtnC3C4Bb6XKlf_V1Jn7z9tJX8DyA2xmQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2439596555</pqid></control><display><type>article</type><title>Invasive versus non‐invasive mapping of the motor cortex</title><source>PubMed Central (Open Access)</source><source>Wiley-Blackwell Open Access Collection</source><creator>Weiss Lucas, Carolin ; Nettekoven, Charlotte ; Neuschmelting, Volker ; Oros‐Peusquens, Ana‐Maria ; Stoffels, Gabriele ; Viswanathan, Shivakumar ; Rehme, Anne K. ; Faymonville, Andrea Maria ; Shah, N. Jon ; Langen, Karl Josef ; Goldbrunner, Roland ; Grefkes, Christian</creator><creatorcontrib>Weiss Lucas, Carolin ; Nettekoven, Charlotte ; Neuschmelting, Volker ; Oros‐Peusquens, Ana‐Maria ; Stoffels, Gabriele ; Viswanathan, Shivakumar ; Rehme, Anne K. ; Faymonville, Andrea Maria ; Shah, N. Jon ; Langen, Karl Josef ; Goldbrunner, Roland ; Grefkes, Christian</creatorcontrib><description>Precise and comprehensive mapping of somatotopic representations in the motor cortex is clinically essential to achieve maximum resection of brain tumours whilst preserving motor function, especially since the current gold standard, that is, intraoperative direct cortical stimulation (DCS), holds limitations linked to the intraoperative setting such as time constraints or anatomical restrictions. Non‐invasive techniques are increasingly relevant with regard to pre‐operative risk‐assessment. Here, we assessed the congruency of neuronavigated transcranial magnetic stimulation (nTMS) and functional magnetic resonance imaging (fMRI) with DCS. The motor representations of the hand, the foot and the tongue regions of 36 patients with intracranial tumours were mapped pre‐operatively using nTMS and fMRI and by intraoperative DCS. Euclidean distances (ED) between hotspots/centres of gravity and (relative) overlaps of the maps were compared. We found significantly smaller EDs (11.4 ± 8.3 vs. 16.8 ± 7.0 mm) and better spatial overlaps (64 ± 38% vs. 37 ± 37%) between DCS and nTMS compared with DCS and fMRI. In contrast to DCS, fMRI and nTMS mappings were feasible for all regions and patients without complications. In summary, nTMS seems to be the more promising non‐invasive motor cortex mapping technique to approximate the gold standard DCS results.
The motor representations of the hand, the foot and the tongue regions were mapped pre‐operatively using neuronavigated transcranial magnetic stimulation (nTMS) and functional magnetic resonance imaging (fMRI) in thirty six patients with intracranial tumours and were compared with intraoperative direct cortex stimulation (DCS). We found significantly smaller Euclidean distances and better spatial overlaps between DCS and nTMS compared with DCS and fMRI. In summary, nTMS seems to be the more promising non‐invasive motor cortex mapping technique to approximate the gold standard DCS results.</description><identifier>ISSN: 1065-9471</identifier><identifier>EISSN: 1097-0193</identifier><identifier>DOI: 10.1002/hbm.25101</identifier><identifier>PMID: 32588936</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Brain cancer ; Brain mapping ; Brain tumors ; brain tumours ; Complications ; Cortex (motor) ; electric stimulation ; Functional magnetic resonance imaging ; Glioma ; Magnetic fields ; Magnetic resonance imaging ; Mapping ; Neuroimaging ; precentral motor area ; Representations ; Risk assessment ; surgical procedures, neurologic ; Transcranial magnetic stimulation ; Tumors</subject><ispartof>Human brain mapping, 2020-10, Vol.41 (14), p.3970-3983</ispartof><rights>2020 The Authors. published by Wiley Periodicals LLC.</rights><rights>2020 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.</rights><rights>COPYRIGHT 2020 John Wiley & Sons, Inc.</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5101-66038064c7d822ebc773acd1f3cae6280122add7a3b7c8a66dd0a5757cdbbfe03</citedby><cites>FETCH-LOGICAL-c5101-66038064c7d822ebc773acd1f3cae6280122add7a3b7c8a66dd0a5757cdbbfe03</cites><orcidid>0000-0003-1101-5075 ; 0000-0002-7513-3778 ; 0000-0002-1656-720X ; 0000-0001-6463-0034 ; 0000-0001-7114-1941 ; 0000-0002-8151-6169 ; 0000-0001-7527-6990</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7469817/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7469817/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,11543,27905,27906,46033,46457,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32588936$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Weiss Lucas, Carolin</creatorcontrib><creatorcontrib>Nettekoven, Charlotte</creatorcontrib><creatorcontrib>Neuschmelting, Volker</creatorcontrib><creatorcontrib>Oros‐Peusquens, Ana‐Maria</creatorcontrib><creatorcontrib>Stoffels, Gabriele</creatorcontrib><creatorcontrib>Viswanathan, Shivakumar</creatorcontrib><creatorcontrib>Rehme, Anne K.</creatorcontrib><creatorcontrib>Faymonville, Andrea Maria</creatorcontrib><creatorcontrib>Shah, N. Jon</creatorcontrib><creatorcontrib>Langen, Karl Josef</creatorcontrib><creatorcontrib>Goldbrunner, Roland</creatorcontrib><creatorcontrib>Grefkes, Christian</creatorcontrib><title>Invasive versus non‐invasive mapping of the motor cortex</title><title>Human brain mapping</title><addtitle>Hum Brain Mapp</addtitle><description>Precise and comprehensive mapping of somatotopic representations in the motor cortex is clinically essential to achieve maximum resection of brain tumours whilst preserving motor function, especially since the current gold standard, that is, intraoperative direct cortical stimulation (DCS), holds limitations linked to the intraoperative setting such as time constraints or anatomical restrictions. Non‐invasive techniques are increasingly relevant with regard to pre‐operative risk‐assessment. Here, we assessed the congruency of neuronavigated transcranial magnetic stimulation (nTMS) and functional magnetic resonance imaging (fMRI) with DCS. The motor representations of the hand, the foot and the tongue regions of 36 patients with intracranial tumours were mapped pre‐operatively using nTMS and fMRI and by intraoperative DCS. Euclidean distances (ED) between hotspots/centres of gravity and (relative) overlaps of the maps were compared. We found significantly smaller EDs (11.4 ± 8.3 vs. 16.8 ± 7.0 mm) and better spatial overlaps (64 ± 38% vs. 37 ± 37%) between DCS and nTMS compared with DCS and fMRI. In contrast to DCS, fMRI and nTMS mappings were feasible for all regions and patients without complications. In summary, nTMS seems to be the more promising non‐invasive motor cortex mapping technique to approximate the gold standard DCS results.
The motor representations of the hand, the foot and the tongue regions were mapped pre‐operatively using neuronavigated transcranial magnetic stimulation (nTMS) and functional magnetic resonance imaging (fMRI) in thirty six patients with intracranial tumours and were compared with intraoperative direct cortex stimulation (DCS). We found significantly smaller Euclidean distances and better spatial overlaps between DCS and nTMS compared with DCS and fMRI. In summary, nTMS seems to be the more promising non‐invasive motor cortex mapping technique to approximate the gold standard DCS results.</description><subject>Brain cancer</subject><subject>Brain mapping</subject><subject>Brain tumors</subject><subject>brain tumours</subject><subject>Complications</subject><subject>Cortex (motor)</subject><subject>electric stimulation</subject><subject>Functional magnetic resonance imaging</subject><subject>Glioma</subject><subject>Magnetic fields</subject><subject>Magnetic resonance imaging</subject><subject>Mapping</subject><subject>Neuroimaging</subject><subject>precentral motor area</subject><subject>Representations</subject><subject>Risk assessment</subject><subject>surgical procedures, neurologic</subject><subject>Transcranial magnetic stimulation</subject><subject>Tumors</subject><issn>1065-9471</issn><issn>1097-0193</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp1kUtuFDEQhi1EREJgwQVQS2zIoicue_xoFpFCBEmkIDawtty2e8ZRtz3Y3QPZ5QickZPgyeRBEMgL2-Wv_nLVj9ArwDPAmBwu22FGGGB4gvYAN6LG0NCnmzNndTMXsIue53yJMQDD8AztUsKkbCjfQ-_Ow1pnv3bV2qU85SrE8Ov6p7-LDnq18mFRxa4al-Uax5gqE9PofrxAO53us3t5u--jrx8_fDk5qy8-n56fHF_UZvOlmnNMJeZzI6wkxLVGCKqNhY4a7TiRGAjR1gpNW2Gk5txarJlgwti27Rym--hoq7ua2sFZ48KYdK9WyQ86XamovXr8EvxSLeJaiTlvJIgi8PZWIMVvk8ujGnw2ru91cHHKisxBAqUY04K--Qu9jFMKpb1C0YY1nDH2QC1075QPXSx1zUZUHYsydCASeKFm_6DKsm7wJgbX-RJ_lHCwTTAp5pxcd98jYLUxWhWj1Y3RhX3951DuyTtnC3C4Bb6XKlf_V1Jn7z9tJX8DyA2xmQ</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Weiss Lucas, Carolin</creator><creator>Nettekoven, Charlotte</creator><creator>Neuschmelting, Volker</creator><creator>Oros‐Peusquens, Ana‐Maria</creator><creator>Stoffels, Gabriele</creator><creator>Viswanathan, Shivakumar</creator><creator>Rehme, Anne K.</creator><creator>Faymonville, Andrea Maria</creator><creator>Shah, N. Jon</creator><creator>Langen, Karl Josef</creator><creator>Goldbrunner, Roland</creator><creator>Grefkes, Christian</creator><general>John Wiley & Sons, Inc</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1101-5075</orcidid><orcidid>https://orcid.org/0000-0002-7513-3778</orcidid><orcidid>https://orcid.org/0000-0002-1656-720X</orcidid><orcidid>https://orcid.org/0000-0001-6463-0034</orcidid><orcidid>https://orcid.org/0000-0001-7114-1941</orcidid><orcidid>https://orcid.org/0000-0002-8151-6169</orcidid><orcidid>https://orcid.org/0000-0001-7527-6990</orcidid></search><sort><creationdate>20201001</creationdate><title>Invasive versus non‐invasive mapping of the motor cortex</title><author>Weiss Lucas, Carolin ; Nettekoven, Charlotte ; Neuschmelting, Volker ; Oros‐Peusquens, Ana‐Maria ; Stoffels, Gabriele ; Viswanathan, Shivakumar ; Rehme, Anne K. ; Faymonville, Andrea Maria ; Shah, N. Jon ; Langen, Karl Josef ; Goldbrunner, Roland ; Grefkes, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5101-66038064c7d822ebc773acd1f3cae6280122add7a3b7c8a66dd0a5757cdbbfe03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Brain cancer</topic><topic>Brain mapping</topic><topic>Brain tumors</topic><topic>brain tumours</topic><topic>Complications</topic><topic>Cortex (motor)</topic><topic>electric stimulation</topic><topic>Functional magnetic resonance imaging</topic><topic>Glioma</topic><topic>Magnetic fields</topic><topic>Magnetic resonance imaging</topic><topic>Mapping</topic><topic>Neuroimaging</topic><topic>precentral motor area</topic><topic>Representations</topic><topic>Risk assessment</topic><topic>surgical procedures, neurologic</topic><topic>Transcranial magnetic stimulation</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weiss Lucas, Carolin</creatorcontrib><creatorcontrib>Nettekoven, Charlotte</creatorcontrib><creatorcontrib>Neuschmelting, Volker</creatorcontrib><creatorcontrib>Oros‐Peusquens, Ana‐Maria</creatorcontrib><creatorcontrib>Stoffels, Gabriele</creatorcontrib><creatorcontrib>Viswanathan, Shivakumar</creatorcontrib><creatorcontrib>Rehme, Anne K.</creatorcontrib><creatorcontrib>Faymonville, Andrea Maria</creatorcontrib><creatorcontrib>Shah, N. Jon</creatorcontrib><creatorcontrib>Langen, Karl Josef</creatorcontrib><creatorcontrib>Goldbrunner, Roland</creatorcontrib><creatorcontrib>Grefkes, Christian</creatorcontrib><collection>Wiley-Blackwell Open Access Collection</collection><collection>Wiley Online Library Free Content</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Human brain mapping</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weiss Lucas, Carolin</au><au>Nettekoven, Charlotte</au><au>Neuschmelting, Volker</au><au>Oros‐Peusquens, Ana‐Maria</au><au>Stoffels, Gabriele</au><au>Viswanathan, Shivakumar</au><au>Rehme, Anne K.</au><au>Faymonville, Andrea Maria</au><au>Shah, N. Jon</au><au>Langen, Karl Josef</au><au>Goldbrunner, Roland</au><au>Grefkes, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Invasive versus non‐invasive mapping of the motor cortex</atitle><jtitle>Human brain mapping</jtitle><addtitle>Hum Brain Mapp</addtitle><date>2020-10-01</date><risdate>2020</risdate><volume>41</volume><issue>14</issue><spage>3970</spage><epage>3983</epage><pages>3970-3983</pages><issn>1065-9471</issn><eissn>1097-0193</eissn><abstract>Precise and comprehensive mapping of somatotopic representations in the motor cortex is clinically essential to achieve maximum resection of brain tumours whilst preserving motor function, especially since the current gold standard, that is, intraoperative direct cortical stimulation (DCS), holds limitations linked to the intraoperative setting such as time constraints or anatomical restrictions. Non‐invasive techniques are increasingly relevant with regard to pre‐operative risk‐assessment. Here, we assessed the congruency of neuronavigated transcranial magnetic stimulation (nTMS) and functional magnetic resonance imaging (fMRI) with DCS. The motor representations of the hand, the foot and the tongue regions of 36 patients with intracranial tumours were mapped pre‐operatively using nTMS and fMRI and by intraoperative DCS. Euclidean distances (ED) between hotspots/centres of gravity and (relative) overlaps of the maps were compared. We found significantly smaller EDs (11.4 ± 8.3 vs. 16.8 ± 7.0 mm) and better spatial overlaps (64 ± 38% vs. 37 ± 37%) between DCS and nTMS compared with DCS and fMRI. In contrast to DCS, fMRI and nTMS mappings were feasible for all regions and patients without complications. In summary, nTMS seems to be the more promising non‐invasive motor cortex mapping technique to approximate the gold standard DCS results.
The motor representations of the hand, the foot and the tongue regions were mapped pre‐operatively using neuronavigated transcranial magnetic stimulation (nTMS) and functional magnetic resonance imaging (fMRI) in thirty six patients with intracranial tumours and were compared with intraoperative direct cortex stimulation (DCS). We found significantly smaller Euclidean distances and better spatial overlaps between DCS and nTMS compared with DCS and fMRI. In summary, nTMS seems to be the more promising non‐invasive motor cortex mapping technique to approximate the gold standard DCS results.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>32588936</pmid><doi>10.1002/hbm.25101</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-1101-5075</orcidid><orcidid>https://orcid.org/0000-0002-7513-3778</orcidid><orcidid>https://orcid.org/0000-0002-1656-720X</orcidid><orcidid>https://orcid.org/0000-0001-6463-0034</orcidid><orcidid>https://orcid.org/0000-0001-7114-1941</orcidid><orcidid>https://orcid.org/0000-0002-8151-6169</orcidid><orcidid>https://orcid.org/0000-0001-7527-6990</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1065-9471 |
ispartof | Human brain mapping, 2020-10, Vol.41 (14), p.3970-3983 |
issn | 1065-9471 1097-0193 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7469817 |
source | PubMed Central (Open Access); Wiley-Blackwell Open Access Collection |
subjects | Brain cancer Brain mapping Brain tumors brain tumours Complications Cortex (motor) electric stimulation Functional magnetic resonance imaging Glioma Magnetic fields Magnetic resonance imaging Mapping Neuroimaging precentral motor area Representations Risk assessment surgical procedures, neurologic Transcranial magnetic stimulation Tumors |
title | Invasive versus non‐invasive mapping of the motor cortex |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T19%3A39%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Invasive%20versus%20non%E2%80%90invasive%20mapping%20of%20the%20motor%20cortex&rft.jtitle=Human%20brain%20mapping&rft.au=Weiss%20Lucas,%20Carolin&rft.date=2020-10-01&rft.volume=41&rft.issue=14&rft.spage=3970&rft.epage=3983&rft.pages=3970-3983&rft.issn=1065-9471&rft.eissn=1097-0193&rft_id=info:doi/10.1002/hbm.25101&rft_dat=%3Cgale_pubme%3EA710612816%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5101-66038064c7d822ebc773acd1f3cae6280122add7a3b7c8a66dd0a5757cdbbfe03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2439596555&rft_id=info:pmid/32588936&rft_galeid=A710612816&rfr_iscdi=true |