Loading…

Invasive versus non‐invasive mapping of the motor cortex

Precise and comprehensive mapping of somatotopic representations in the motor cortex is clinically essential to achieve maximum resection of brain tumours whilst preserving motor function, especially since the current gold standard, that is, intraoperative direct cortical stimulation (DCS), holds li...

Full description

Saved in:
Bibliographic Details
Published in:Human brain mapping 2020-10, Vol.41 (14), p.3970-3983
Main Authors: Weiss Lucas, Carolin, Nettekoven, Charlotte, Neuschmelting, Volker, Oros‐Peusquens, Ana‐Maria, Stoffels, Gabriele, Viswanathan, Shivakumar, Rehme, Anne K., Faymonville, Andrea Maria, Shah, N. Jon, Langen, Karl Josef, Goldbrunner, Roland, Grefkes, Christian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5101-66038064c7d822ebc773acd1f3cae6280122add7a3b7c8a66dd0a5757cdbbfe03
cites cdi_FETCH-LOGICAL-c5101-66038064c7d822ebc773acd1f3cae6280122add7a3b7c8a66dd0a5757cdbbfe03
container_end_page 3983
container_issue 14
container_start_page 3970
container_title Human brain mapping
container_volume 41
creator Weiss Lucas, Carolin
Nettekoven, Charlotte
Neuschmelting, Volker
Oros‐Peusquens, Ana‐Maria
Stoffels, Gabriele
Viswanathan, Shivakumar
Rehme, Anne K.
Faymonville, Andrea Maria
Shah, N. Jon
Langen, Karl Josef
Goldbrunner, Roland
Grefkes, Christian
description Precise and comprehensive mapping of somatotopic representations in the motor cortex is clinically essential to achieve maximum resection of brain tumours whilst preserving motor function, especially since the current gold standard, that is, intraoperative direct cortical stimulation (DCS), holds limitations linked to the intraoperative setting such as time constraints or anatomical restrictions. Non‐invasive techniques are increasingly relevant with regard to pre‐operative risk‐assessment. Here, we assessed the congruency of neuronavigated transcranial magnetic stimulation (nTMS) and functional magnetic resonance imaging (fMRI) with DCS. The motor representations of the hand, the foot and the tongue regions of 36 patients with intracranial tumours were mapped pre‐operatively using nTMS and fMRI and by intraoperative DCS. Euclidean distances (ED) between hotspots/centres of gravity and (relative) overlaps of the maps were compared. We found significantly smaller EDs (11.4 ± 8.3 vs. 16.8 ± 7.0 mm) and better spatial overlaps (64 ± 38% vs. 37 ± 37%) between DCS and nTMS compared with DCS and fMRI. In contrast to DCS, fMRI and nTMS mappings were feasible for all regions and patients without complications. In summary, nTMS seems to be the more promising non‐invasive motor cortex mapping technique to approximate the gold standard DCS results. The motor representations of the hand, the foot and the tongue regions were mapped pre‐operatively using neuronavigated transcranial magnetic stimulation (nTMS) and functional magnetic resonance imaging (fMRI) in thirty six patients with intracranial tumours and were compared with intraoperative direct cortex stimulation (DCS). We found significantly smaller Euclidean distances and better spatial overlaps between DCS and nTMS compared with DCS and fMRI. In summary, nTMS seems to be the more promising non‐invasive motor cortex mapping technique to approximate the gold standard DCS results.
doi_str_mv 10.1002/hbm.25101
format article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7469817</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A710612816</galeid><sourcerecordid>A710612816</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5101-66038064c7d822ebc773acd1f3cae6280122add7a3b7c8a66dd0a5757cdbbfe03</originalsourceid><addsrcrecordid>eNp1kUtuFDEQhi1EREJgwQVQS2zIoicue_xoFpFCBEmkIDawtty2e8ZRtz3Y3QPZ5QickZPgyeRBEMgL2-Wv_nLVj9ArwDPAmBwu22FGGGB4gvYAN6LG0NCnmzNndTMXsIue53yJMQDD8AztUsKkbCjfQ-_Ow1pnv3bV2qU85SrE8Ov6p7-LDnq18mFRxa4al-Uax5gqE9PofrxAO53us3t5u--jrx8_fDk5qy8-n56fHF_UZvOlmnNMJeZzI6wkxLVGCKqNhY4a7TiRGAjR1gpNW2Gk5txarJlgwti27Rym--hoq7ua2sFZ48KYdK9WyQ86XamovXr8EvxSLeJaiTlvJIgi8PZWIMVvk8ujGnw2ru91cHHKisxBAqUY04K--Qu9jFMKpb1C0YY1nDH2QC1075QPXSx1zUZUHYsydCASeKFm_6DKsm7wJgbX-RJ_lHCwTTAp5pxcd98jYLUxWhWj1Y3RhX3951DuyTtnC3C4Bb6XKlf_V1Jn7z9tJX8DyA2xmQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2439596555</pqid></control><display><type>article</type><title>Invasive versus non‐invasive mapping of the motor cortex</title><source>PubMed Central (Open Access)</source><source>Wiley-Blackwell Open Access Collection</source><creator>Weiss Lucas, Carolin ; Nettekoven, Charlotte ; Neuschmelting, Volker ; Oros‐Peusquens, Ana‐Maria ; Stoffels, Gabriele ; Viswanathan, Shivakumar ; Rehme, Anne K. ; Faymonville, Andrea Maria ; Shah, N. Jon ; Langen, Karl Josef ; Goldbrunner, Roland ; Grefkes, Christian</creator><creatorcontrib>Weiss Lucas, Carolin ; Nettekoven, Charlotte ; Neuschmelting, Volker ; Oros‐Peusquens, Ana‐Maria ; Stoffels, Gabriele ; Viswanathan, Shivakumar ; Rehme, Anne K. ; Faymonville, Andrea Maria ; Shah, N. Jon ; Langen, Karl Josef ; Goldbrunner, Roland ; Grefkes, Christian</creatorcontrib><description>Precise and comprehensive mapping of somatotopic representations in the motor cortex is clinically essential to achieve maximum resection of brain tumours whilst preserving motor function, especially since the current gold standard, that is, intraoperative direct cortical stimulation (DCS), holds limitations linked to the intraoperative setting such as time constraints or anatomical restrictions. Non‐invasive techniques are increasingly relevant with regard to pre‐operative risk‐assessment. Here, we assessed the congruency of neuronavigated transcranial magnetic stimulation (nTMS) and functional magnetic resonance imaging (fMRI) with DCS. The motor representations of the hand, the foot and the tongue regions of 36 patients with intracranial tumours were mapped pre‐operatively using nTMS and fMRI and by intraoperative DCS. Euclidean distances (ED) between hotspots/centres of gravity and (relative) overlaps of the maps were compared. We found significantly smaller EDs (11.4 ± 8.3 vs. 16.8 ± 7.0 mm) and better spatial overlaps (64 ± 38% vs. 37 ± 37%) between DCS and nTMS compared with DCS and fMRI. In contrast to DCS, fMRI and nTMS mappings were feasible for all regions and patients without complications. In summary, nTMS seems to be the more promising non‐invasive motor cortex mapping technique to approximate the gold standard DCS results. The motor representations of the hand, the foot and the tongue regions were mapped pre‐operatively using neuronavigated transcranial magnetic stimulation (nTMS) and functional magnetic resonance imaging (fMRI) in thirty six patients with intracranial tumours and were compared with intraoperative direct cortex stimulation (DCS). We found significantly smaller Euclidean distances and better spatial overlaps between DCS and nTMS compared with DCS and fMRI. In summary, nTMS seems to be the more promising non‐invasive motor cortex mapping technique to approximate the gold standard DCS results.</description><identifier>ISSN: 1065-9471</identifier><identifier>EISSN: 1097-0193</identifier><identifier>DOI: 10.1002/hbm.25101</identifier><identifier>PMID: 32588936</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Brain cancer ; Brain mapping ; Brain tumors ; brain tumours ; Complications ; Cortex (motor) ; electric stimulation ; Functional magnetic resonance imaging ; Glioma ; Magnetic fields ; Magnetic resonance imaging ; Mapping ; Neuroimaging ; precentral motor area ; Representations ; Risk assessment ; surgical procedures, neurologic ; Transcranial magnetic stimulation ; Tumors</subject><ispartof>Human brain mapping, 2020-10, Vol.41 (14), p.3970-3983</ispartof><rights>2020 The Authors. published by Wiley Periodicals LLC.</rights><rights>2020 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.</rights><rights>COPYRIGHT 2020 John Wiley &amp; Sons, Inc.</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5101-66038064c7d822ebc773acd1f3cae6280122add7a3b7c8a66dd0a5757cdbbfe03</citedby><cites>FETCH-LOGICAL-c5101-66038064c7d822ebc773acd1f3cae6280122add7a3b7c8a66dd0a5757cdbbfe03</cites><orcidid>0000-0003-1101-5075 ; 0000-0002-7513-3778 ; 0000-0002-1656-720X ; 0000-0001-6463-0034 ; 0000-0001-7114-1941 ; 0000-0002-8151-6169 ; 0000-0001-7527-6990</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7469817/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7469817/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,11543,27905,27906,46033,46457,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32588936$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Weiss Lucas, Carolin</creatorcontrib><creatorcontrib>Nettekoven, Charlotte</creatorcontrib><creatorcontrib>Neuschmelting, Volker</creatorcontrib><creatorcontrib>Oros‐Peusquens, Ana‐Maria</creatorcontrib><creatorcontrib>Stoffels, Gabriele</creatorcontrib><creatorcontrib>Viswanathan, Shivakumar</creatorcontrib><creatorcontrib>Rehme, Anne K.</creatorcontrib><creatorcontrib>Faymonville, Andrea Maria</creatorcontrib><creatorcontrib>Shah, N. Jon</creatorcontrib><creatorcontrib>Langen, Karl Josef</creatorcontrib><creatorcontrib>Goldbrunner, Roland</creatorcontrib><creatorcontrib>Grefkes, Christian</creatorcontrib><title>Invasive versus non‐invasive mapping of the motor cortex</title><title>Human brain mapping</title><addtitle>Hum Brain Mapp</addtitle><description>Precise and comprehensive mapping of somatotopic representations in the motor cortex is clinically essential to achieve maximum resection of brain tumours whilst preserving motor function, especially since the current gold standard, that is, intraoperative direct cortical stimulation (DCS), holds limitations linked to the intraoperative setting such as time constraints or anatomical restrictions. Non‐invasive techniques are increasingly relevant with regard to pre‐operative risk‐assessment. Here, we assessed the congruency of neuronavigated transcranial magnetic stimulation (nTMS) and functional magnetic resonance imaging (fMRI) with DCS. The motor representations of the hand, the foot and the tongue regions of 36 patients with intracranial tumours were mapped pre‐operatively using nTMS and fMRI and by intraoperative DCS. Euclidean distances (ED) between hotspots/centres of gravity and (relative) overlaps of the maps were compared. We found significantly smaller EDs (11.4 ± 8.3 vs. 16.8 ± 7.0 mm) and better spatial overlaps (64 ± 38% vs. 37 ± 37%) between DCS and nTMS compared with DCS and fMRI. In contrast to DCS, fMRI and nTMS mappings were feasible for all regions and patients without complications. In summary, nTMS seems to be the more promising non‐invasive motor cortex mapping technique to approximate the gold standard DCS results. The motor representations of the hand, the foot and the tongue regions were mapped pre‐operatively using neuronavigated transcranial magnetic stimulation (nTMS) and functional magnetic resonance imaging (fMRI) in thirty six patients with intracranial tumours and were compared with intraoperative direct cortex stimulation (DCS). We found significantly smaller Euclidean distances and better spatial overlaps between DCS and nTMS compared with DCS and fMRI. In summary, nTMS seems to be the more promising non‐invasive motor cortex mapping technique to approximate the gold standard DCS results.</description><subject>Brain cancer</subject><subject>Brain mapping</subject><subject>Brain tumors</subject><subject>brain tumours</subject><subject>Complications</subject><subject>Cortex (motor)</subject><subject>electric stimulation</subject><subject>Functional magnetic resonance imaging</subject><subject>Glioma</subject><subject>Magnetic fields</subject><subject>Magnetic resonance imaging</subject><subject>Mapping</subject><subject>Neuroimaging</subject><subject>precentral motor area</subject><subject>Representations</subject><subject>Risk assessment</subject><subject>surgical procedures, neurologic</subject><subject>Transcranial magnetic stimulation</subject><subject>Tumors</subject><issn>1065-9471</issn><issn>1097-0193</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp1kUtuFDEQhi1EREJgwQVQS2zIoicue_xoFpFCBEmkIDawtty2e8ZRtz3Y3QPZ5QickZPgyeRBEMgL2-Wv_nLVj9ArwDPAmBwu22FGGGB4gvYAN6LG0NCnmzNndTMXsIue53yJMQDD8AztUsKkbCjfQ-_Ow1pnv3bV2qU85SrE8Ov6p7-LDnq18mFRxa4al-Uax5gqE9PofrxAO53us3t5u--jrx8_fDk5qy8-n56fHF_UZvOlmnNMJeZzI6wkxLVGCKqNhY4a7TiRGAjR1gpNW2Gk5txarJlgwti27Rym--hoq7ua2sFZ48KYdK9WyQ86XamovXr8EvxSLeJaiTlvJIgi8PZWIMVvk8ujGnw2ru91cHHKisxBAqUY04K--Qu9jFMKpb1C0YY1nDH2QC1075QPXSx1zUZUHYsydCASeKFm_6DKsm7wJgbX-RJ_lHCwTTAp5pxcd98jYLUxWhWj1Y3RhX3951DuyTtnC3C4Bb6XKlf_V1Jn7z9tJX8DyA2xmQ</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Weiss Lucas, Carolin</creator><creator>Nettekoven, Charlotte</creator><creator>Neuschmelting, Volker</creator><creator>Oros‐Peusquens, Ana‐Maria</creator><creator>Stoffels, Gabriele</creator><creator>Viswanathan, Shivakumar</creator><creator>Rehme, Anne K.</creator><creator>Faymonville, Andrea Maria</creator><creator>Shah, N. Jon</creator><creator>Langen, Karl Josef</creator><creator>Goldbrunner, Roland</creator><creator>Grefkes, Christian</creator><general>John Wiley &amp; Sons, Inc</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1101-5075</orcidid><orcidid>https://orcid.org/0000-0002-7513-3778</orcidid><orcidid>https://orcid.org/0000-0002-1656-720X</orcidid><orcidid>https://orcid.org/0000-0001-6463-0034</orcidid><orcidid>https://orcid.org/0000-0001-7114-1941</orcidid><orcidid>https://orcid.org/0000-0002-8151-6169</orcidid><orcidid>https://orcid.org/0000-0001-7527-6990</orcidid></search><sort><creationdate>20201001</creationdate><title>Invasive versus non‐invasive mapping of the motor cortex</title><author>Weiss Lucas, Carolin ; Nettekoven, Charlotte ; Neuschmelting, Volker ; Oros‐Peusquens, Ana‐Maria ; Stoffels, Gabriele ; Viswanathan, Shivakumar ; Rehme, Anne K. ; Faymonville, Andrea Maria ; Shah, N. Jon ; Langen, Karl Josef ; Goldbrunner, Roland ; Grefkes, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5101-66038064c7d822ebc773acd1f3cae6280122add7a3b7c8a66dd0a5757cdbbfe03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Brain cancer</topic><topic>Brain mapping</topic><topic>Brain tumors</topic><topic>brain tumours</topic><topic>Complications</topic><topic>Cortex (motor)</topic><topic>electric stimulation</topic><topic>Functional magnetic resonance imaging</topic><topic>Glioma</topic><topic>Magnetic fields</topic><topic>Magnetic resonance imaging</topic><topic>Mapping</topic><topic>Neuroimaging</topic><topic>precentral motor area</topic><topic>Representations</topic><topic>Risk assessment</topic><topic>surgical procedures, neurologic</topic><topic>Transcranial magnetic stimulation</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weiss Lucas, Carolin</creatorcontrib><creatorcontrib>Nettekoven, Charlotte</creatorcontrib><creatorcontrib>Neuschmelting, Volker</creatorcontrib><creatorcontrib>Oros‐Peusquens, Ana‐Maria</creatorcontrib><creatorcontrib>Stoffels, Gabriele</creatorcontrib><creatorcontrib>Viswanathan, Shivakumar</creatorcontrib><creatorcontrib>Rehme, Anne K.</creatorcontrib><creatorcontrib>Faymonville, Andrea Maria</creatorcontrib><creatorcontrib>Shah, N. Jon</creatorcontrib><creatorcontrib>Langen, Karl Josef</creatorcontrib><creatorcontrib>Goldbrunner, Roland</creatorcontrib><creatorcontrib>Grefkes, Christian</creatorcontrib><collection>Wiley-Blackwell Open Access Collection</collection><collection>Wiley Online Library Free Content</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Human brain mapping</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weiss Lucas, Carolin</au><au>Nettekoven, Charlotte</au><au>Neuschmelting, Volker</au><au>Oros‐Peusquens, Ana‐Maria</au><au>Stoffels, Gabriele</au><au>Viswanathan, Shivakumar</au><au>Rehme, Anne K.</au><au>Faymonville, Andrea Maria</au><au>Shah, N. Jon</au><au>Langen, Karl Josef</au><au>Goldbrunner, Roland</au><au>Grefkes, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Invasive versus non‐invasive mapping of the motor cortex</atitle><jtitle>Human brain mapping</jtitle><addtitle>Hum Brain Mapp</addtitle><date>2020-10-01</date><risdate>2020</risdate><volume>41</volume><issue>14</issue><spage>3970</spage><epage>3983</epage><pages>3970-3983</pages><issn>1065-9471</issn><eissn>1097-0193</eissn><abstract>Precise and comprehensive mapping of somatotopic representations in the motor cortex is clinically essential to achieve maximum resection of brain tumours whilst preserving motor function, especially since the current gold standard, that is, intraoperative direct cortical stimulation (DCS), holds limitations linked to the intraoperative setting such as time constraints or anatomical restrictions. Non‐invasive techniques are increasingly relevant with regard to pre‐operative risk‐assessment. Here, we assessed the congruency of neuronavigated transcranial magnetic stimulation (nTMS) and functional magnetic resonance imaging (fMRI) with DCS. The motor representations of the hand, the foot and the tongue regions of 36 patients with intracranial tumours were mapped pre‐operatively using nTMS and fMRI and by intraoperative DCS. Euclidean distances (ED) between hotspots/centres of gravity and (relative) overlaps of the maps were compared. We found significantly smaller EDs (11.4 ± 8.3 vs. 16.8 ± 7.0 mm) and better spatial overlaps (64 ± 38% vs. 37 ± 37%) between DCS and nTMS compared with DCS and fMRI. In contrast to DCS, fMRI and nTMS mappings were feasible for all regions and patients without complications. In summary, nTMS seems to be the more promising non‐invasive motor cortex mapping technique to approximate the gold standard DCS results. The motor representations of the hand, the foot and the tongue regions were mapped pre‐operatively using neuronavigated transcranial magnetic stimulation (nTMS) and functional magnetic resonance imaging (fMRI) in thirty six patients with intracranial tumours and were compared with intraoperative direct cortex stimulation (DCS). We found significantly smaller Euclidean distances and better spatial overlaps between DCS and nTMS compared with DCS and fMRI. In summary, nTMS seems to be the more promising non‐invasive motor cortex mapping technique to approximate the gold standard DCS results.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>32588936</pmid><doi>10.1002/hbm.25101</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-1101-5075</orcidid><orcidid>https://orcid.org/0000-0002-7513-3778</orcidid><orcidid>https://orcid.org/0000-0002-1656-720X</orcidid><orcidid>https://orcid.org/0000-0001-6463-0034</orcidid><orcidid>https://orcid.org/0000-0001-7114-1941</orcidid><orcidid>https://orcid.org/0000-0002-8151-6169</orcidid><orcidid>https://orcid.org/0000-0001-7527-6990</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1065-9471
ispartof Human brain mapping, 2020-10, Vol.41 (14), p.3970-3983
issn 1065-9471
1097-0193
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7469817
source PubMed Central (Open Access); Wiley-Blackwell Open Access Collection
subjects Brain cancer
Brain mapping
Brain tumors
brain tumours
Complications
Cortex (motor)
electric stimulation
Functional magnetic resonance imaging
Glioma
Magnetic fields
Magnetic resonance imaging
Mapping
Neuroimaging
precentral motor area
Representations
Risk assessment
surgical procedures, neurologic
Transcranial magnetic stimulation
Tumors
title Invasive versus non‐invasive mapping of the motor cortex
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T19%3A39%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Invasive%20versus%20non%E2%80%90invasive%20mapping%20of%20the%20motor%20cortex&rft.jtitle=Human%20brain%20mapping&rft.au=Weiss%20Lucas,%20Carolin&rft.date=2020-10-01&rft.volume=41&rft.issue=14&rft.spage=3970&rft.epage=3983&rft.pages=3970-3983&rft.issn=1065-9471&rft.eissn=1097-0193&rft_id=info:doi/10.1002/hbm.25101&rft_dat=%3Cgale_pubme%3EA710612816%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5101-66038064c7d822ebc773acd1f3cae6280122add7a3b7c8a66dd0a5757cdbbfe03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2439596555&rft_id=info:pmid/32588936&rft_galeid=A710612816&rfr_iscdi=true