Loading…

3-D electromagnetic radiative non-Newtonian nanofluid flow with Joule heating and higher-order reactions in porous materials

The aim of this work is to discuss the effect of m th-order reactions on the magnetic flow of hyperbolic tangent nanofluid through extending surface in a porous material with thermal radiation, several slips, Joule heating, and viscous dissipation. In order to convert non-linear partial differential...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2020-09, Vol.10 (1), p.14513, Article 14513
Main Authors: Alaidrous, Amel A., Eid, Mohamed R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The aim of this work is to discuss the effect of m th-order reactions on the magnetic flow of hyperbolic tangent nanofluid through extending surface in a porous material with thermal radiation, several slips, Joule heating, and viscous dissipation. In order to convert non-linear partial differential governing equations into ordinary ones, a technique of similarity transformations has been implemented and then solved using the OHAM (optimal homotopy analytical method). The outcomes of novel effective parameters on the non-dimensional interesting physical quantities are established utilizing the tabular and pictorial outlines. After a comparison with previous literature studies, the results were finely compliant. The study explores that the reduced Nusselt number is diminished for the escalating values of radiation, porosity, and source (sink) parameters. It is found that the order of the chemical reaction m  = 2 is dominant in concentration as well as mass transfer in both destructive and generative reactions. When m  reinforces for a destructive reaction, mass transfer is reduced with 34.7% and is stabled after η  = 3. In the being of the destructive reaction and Joule heating, the nanofluid's temperature is enhanced.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-020-71543-4