Loading…

Inhibition of hsa_circ_0002570 suppresses high-glucose–induced angiogenesis and inflammation in retinal microvascular endothelial cells through miR-1243/angiomotin axis

Diabetic retinopathy (DR) is the most severe microvascular complication of diabetes and a major cause of visual impairment and blindness. However, the treatment for DR is still limited. Our study aimed to explore the role of circular RNA_0002570 in DR. First, we predicted the potential microRNA and...

Full description

Saved in:
Bibliographic Details
Published in:Cell stress & chaperones 2020-09, Vol.25 (5), p.767-777
Main Authors: Liu, Guodan, Zhou, Shifeng, Li, Xinge, Ding, Xuchen, Tian, Miao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Diabetic retinopathy (DR) is the most severe microvascular complication of diabetes and a major cause of visual impairment and blindness. However, the treatment for DR is still limited. Our study aimed to explore the role of circular RNA_0002570 in DR. First, we predicted the potential microRNA and mRNA that could bind to circ_0002570 and identified the miR-1243 and angiomotin gene; then, we used RT-PCR and Western blot to measure their expression. Next, we evaluated the abilities of proliferation, migration, and angiogenesis in vitro in human retinal microvascular endothelial cells (hRMECs) by CCK-8, transwell assay, and tube formation assay, respectively. To analyze the relationship among miR-1243, circ_0002570, and angiomotin, RNA pull-down and luciferase assay were performed. Our results showed that, in DR patients and high-glucose–induced hRMECs, miR-1243, circ_0002570, and angiomotin were all abnormally expressed. MiR-1243 could directly and competitively bind to both circ_0002570 and angiomotin mRNA to inhibit their expression. Moreover, circ_0002570 suppressed the abilities of proliferation, migration, and angiogenesis in hRMECs induced by high glucose, which was dependent on miR-1243-angiomotin axis. Furthermore, circ_0002570 could upregulate angiomotin by targeting miR-1243 to mediate the dysfunction of hRMECs induced by high glucose. In conclusion, circ_0002570 might serve as a potential target for diagnosis and treatment for DR.
ISSN:1355-8145
1466-1268
DOI:10.1007/s12192-020-01111-2