Loading…
Isolation and characterization of human optic nerve head astrocytes and lamina cribrosa cells
The lamina cribrosa is the initial site of glaucomatous injury. Pathological changes to the lamina cribrosa include posterior displacement of the lamina cribrosa, loss of trophic support, and remodeling of the extracellular matrix. Optic nerve head (ONH) astrocytes and lamina cribrosa cells synthesi...
Saved in:
Published in: | Experimental eye research 2020-08, Vol.197, p.108103-108103, Article 108103 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The lamina cribrosa is the initial site of glaucomatous injury. Pathological changes to the lamina cribrosa include posterior displacement of the lamina cribrosa, loss of trophic support, and remodeling of the extracellular matrix. Optic nerve head (ONH) astrocytes and lamina cribrosa cells synthesize extracellular matrix proteins to support and maintain the lamina cribrosa under physiological conditions. During glaucoma, these cells respond to mechanical strain and other stimuli, which leads to pathological remodeling of the ONH. Although ONH astrocytes and lamina cribrosa cells have been previously cultured, there is no well-accepted, straightforward technique to isolate both cell types from a single dissected human ONH. To better understand the pathophysiology of glaucoma, we obtained and cultured lamina cribrosa explants from human donor eyes. Initially, cells that grew out from the explant were ONH astrocytes and lamina cribrosa cells. Using a specialized medium, we isolated pure populations of lamina cribrosa cells and ONH astrocytes. ONH astrocytes expressed glial fibrillary acidic protein (GFAP). Lamina cribrosa cells expressed alpha-smooth muscle actin (α-SMA), but were negative for GFAP. This method of ONH cell isolation and cell-culture will provide a technique to better understand the molecular and cell-specific changes in glaucomatous damage to the ONH.
•Dissection of human optic nerve head (ONH).•A technique to isolate human ONH astrocytes and lamina cribrosa cells from a single ONH explant.•Characterization of ONH cells. |
---|---|
ISSN: | 0014-4835 1096-0007 |
DOI: | 10.1016/j.exer.2020.108103 |