Loading…
Recognition of Human IgG1 by Fcγ Receptors: Structural Insights from Hydrogen–Deuterium Exchange and Fast Photochemical Oxidation of Proteins Coupled with Mass Spectrometry
Antibody-dependent cell-mediated cytotoxicity (ADCC) is an effector function of immunoglobulins (IgGs) involved in the killing of target cells by a cytotoxic effector cell. Recognition of IgG by Fc receptors expressed on natural killer cells, mostly FcγIII receptors (FcγRIII), underpins the ADCC mec...
Saved in:
Published in: | Biochemistry (Easton) 2019-02, Vol.58 (8), p.1074-1080 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Antibody-dependent cell-mediated cytotoxicity (ADCC) is an effector function of immunoglobulins (IgGs) involved in the killing of target cells by a cytotoxic effector cell. Recognition of IgG by Fc receptors expressed on natural killer cells, mostly FcγIII receptors (FcγRIII), underpins the ADCC mechanism, thus motivating investigations of these interactions. In this paper, we describe the combination of hydrogen–deuterium exchange and fast photochemical oxidation of proteins (FPOP) coupled with mass spectrometry to study the interactions of the human IgG1/FcγRIII complex. Using these orthogonal approaches, we identified critical peptide regions and residues involved in the recognition of IgG1 by FcγRIII. The footprinting results are consistent with the previously published crystal structure of the IgG1 Fc/FcγRIII complex. Additionally, our FPOP results reveal the conformational changes in the Fab domain upon binding of the Fc domain to FcγRIII. These data demonstrate the value of footprinting as part of a comprehensive toolbox for identifying the changes in the higher-order structure of therapeutic antibodies in solution. |
---|---|
ISSN: | 0006-2960 1520-4995 |
DOI: | 10.1021/acs.biochem.8b01048 |