Loading…
Nonlinear dynamic analysis of the pure “buckling” mechanism during blow-out trauma of the human orbit
Considering the interplay between orbital bones and intraorbital soft tissues, commonly accepted patterns of the blow-out type of trauma within the human orbit require more thorough investigation to assess the minimal health-threatening impact value. Two different three-dimensional finite element me...
Saved in:
Published in: | Scientific reports 2020-09, Vol.10 (1), p.15275, Article 15275 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c446t-91d8044c84131e124db3de715cbe617f44cb01369bdb9261b93b7cf6710a15503 |
---|---|
cites | cdi_FETCH-LOGICAL-c446t-91d8044c84131e124db3de715cbe617f44cb01369bdb9261b93b7cf6710a15503 |
container_end_page | |
container_issue | 1 |
container_start_page | 15275 |
container_title | Scientific reports |
container_volume | 10 |
creator | Zmuda Trzebiatowski, Marcin Adam Kłosowski, Paweł Skorek, Andrzej Żerdzicki, Krzysztof Lemski, Paweł Koberda, Mateusz |
description | Considering the interplay between orbital bones and intraorbital soft tissues, commonly accepted patterns of the blow-out type of trauma within the human orbit require more thorough investigation to assess the minimal health-threatening impact value. Two different three-dimensional finite element method (FEM) models of the human orbital region were developed to simulate the pure “buckling” mechanism of orbital wall fracture in two variants: the model of orbital bone elements and the model of orbital bone, orbit and intraorbital tissue elements. The mechanical properties of the so-defined numerical skull fragment were applied to the model according to the unique laboratory tensile stress tests performed on small and fragile specimens of orbital bones as well as using the data available in the literature. The nonlinear transient analysis of the contact problem between bodies that differ substantially in terms of the Young’s modulus was carried out to investigate the interaction of different bodies within an instant injury. Potential damage areas were found within the lower orbital wall as well as the destructive load values for both FEM skull models (7,660 N and 8,520 N). Moreover, numerical simulations were validated by comparing them with computed tomography scans of real injuries. |
doi_str_mv | 10.1038/s41598-020-72186-1 |
format | article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7499182</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>32943736</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-91d8044c84131e124db3de715cbe617f44cb01369bdb9261b93b7cf6710a15503</originalsourceid><addsrcrecordid>eNp9kE1OBCEUhInR6ES9gAvDBVp5QP-wMTET_xKjG10ToGkH7W4m0K2ZnQfRy3kS0XHMuJENFV5VPfIhdADkCAirjiOHXFQZoSQrKVRFBhtoQgnPM8oo3VzTO2g_xkeSTk4FB7GNdlgSrGTFBLkb37eutyrgetGrzhmsetUuoovYN3iYWTwfg8Ufr296NE_J-vDx-o47a2aqd7HD9RjSG9atf8n8OOAhqLFTq-ws6R77oN2wh7Ya1Ua7_3Pvovvzs7vpZXZ9e3E1Pb3ODOfFkAmoK8K5qTgwsEB5rVltS8iNtgWUTRppAqwQutaCFqAF06VpihKIgjwnbBedLHvno-5sbWyfvtTKeXCdCgvplZN_J72byQf_LEsuBFQ0FdBlgQk-xmCb3ywQ-cVeLtnLxF5-s5eQQofrW38jK9LJwJaGOP8CZoN89GNIqON_tZ-gvZNh</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nonlinear dynamic analysis of the pure “buckling” mechanism during blow-out trauma of the human orbit</title><source>PubMed Central Free</source><source>Publicly Available Content Database</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Zmuda Trzebiatowski, Marcin Adam ; Kłosowski, Paweł ; Skorek, Andrzej ; Żerdzicki, Krzysztof ; Lemski, Paweł ; Koberda, Mateusz</creator><creatorcontrib>Zmuda Trzebiatowski, Marcin Adam ; Kłosowski, Paweł ; Skorek, Andrzej ; Żerdzicki, Krzysztof ; Lemski, Paweł ; Koberda, Mateusz</creatorcontrib><description>Considering the interplay between orbital bones and intraorbital soft tissues, commonly accepted patterns of the blow-out type of trauma within the human orbit require more thorough investigation to assess the minimal health-threatening impact value. Two different three-dimensional finite element method (FEM) models of the human orbital region were developed to simulate the pure “buckling” mechanism of orbital wall fracture in two variants: the model of orbital bone elements and the model of orbital bone, orbit and intraorbital tissue elements. The mechanical properties of the so-defined numerical skull fragment were applied to the model according to the unique laboratory tensile stress tests performed on small and fragile specimens of orbital bones as well as using the data available in the literature. The nonlinear transient analysis of the contact problem between bodies that differ substantially in terms of the Young’s modulus was carried out to investigate the interaction of different bodies within an instant injury. Potential damage areas were found within the lower orbital wall as well as the destructive load values for both FEM skull models (7,660 N and 8,520 N). Moreover, numerical simulations were validated by comparing them with computed tomography scans of real injuries.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-72186-1</identifier><identifier>PMID: 32943736</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/114/2397 ; 639/166/985 ; 692/698/1671/63 ; Adult ; Biomechanical Phenomena - physiology ; Computer Simulation ; Elastic Modulus ; Female ; Finite Element Analysis ; Humanities and Social Sciences ; Humans ; Male ; Middle Aged ; Models, Biological ; multidisciplinary ; Nonlinear Dynamics ; Orbit - injuries ; Orbital Fractures - pathology ; Science ; Science (multidisciplinary) ; Skull - injuries ; Stress, Mechanical ; Tomography, X-Ray Computed - methods ; Wounds and Injuries - pathology ; Young Adult</subject><ispartof>Scientific reports, 2020-09, Vol.10 (1), p.15275, Article 15275</ispartof><rights>The Author(s) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-91d8044c84131e124db3de715cbe617f44cb01369bdb9261b93b7cf6710a15503</citedby><cites>FETCH-LOGICAL-c446t-91d8044c84131e124db3de715cbe617f44cb01369bdb9261b93b7cf6710a15503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7499182/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7499182/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32943736$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zmuda Trzebiatowski, Marcin Adam</creatorcontrib><creatorcontrib>Kłosowski, Paweł</creatorcontrib><creatorcontrib>Skorek, Andrzej</creatorcontrib><creatorcontrib>Żerdzicki, Krzysztof</creatorcontrib><creatorcontrib>Lemski, Paweł</creatorcontrib><creatorcontrib>Koberda, Mateusz</creatorcontrib><title>Nonlinear dynamic analysis of the pure “buckling” mechanism during blow-out trauma of the human orbit</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Considering the interplay between orbital bones and intraorbital soft tissues, commonly accepted patterns of the blow-out type of trauma within the human orbit require more thorough investigation to assess the minimal health-threatening impact value. Two different three-dimensional finite element method (FEM) models of the human orbital region were developed to simulate the pure “buckling” mechanism of orbital wall fracture in two variants: the model of orbital bone elements and the model of orbital bone, orbit and intraorbital tissue elements. The mechanical properties of the so-defined numerical skull fragment were applied to the model according to the unique laboratory tensile stress tests performed on small and fragile specimens of orbital bones as well as using the data available in the literature. The nonlinear transient analysis of the contact problem between bodies that differ substantially in terms of the Young’s modulus was carried out to investigate the interaction of different bodies within an instant injury. Potential damage areas were found within the lower orbital wall as well as the destructive load values for both FEM skull models (7,660 N and 8,520 N). Moreover, numerical simulations were validated by comparing them with computed tomography scans of real injuries.</description><subject>631/114/2397</subject><subject>639/166/985</subject><subject>692/698/1671/63</subject><subject>Adult</subject><subject>Biomechanical Phenomena - physiology</subject><subject>Computer Simulation</subject><subject>Elastic Modulus</subject><subject>Female</subject><subject>Finite Element Analysis</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Models, Biological</subject><subject>multidisciplinary</subject><subject>Nonlinear Dynamics</subject><subject>Orbit - injuries</subject><subject>Orbital Fractures - pathology</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Skull - injuries</subject><subject>Stress, Mechanical</subject><subject>Tomography, X-Ray Computed - methods</subject><subject>Wounds and Injuries - pathology</subject><subject>Young Adult</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OBCEUhInR6ES9gAvDBVp5QP-wMTET_xKjG10ToGkH7W4m0K2ZnQfRy3kS0XHMuJENFV5VPfIhdADkCAirjiOHXFQZoSQrKVRFBhtoQgnPM8oo3VzTO2g_xkeSTk4FB7GNdlgSrGTFBLkb37eutyrgetGrzhmsetUuoovYN3iYWTwfg8Ufr296NE_J-vDx-o47a2aqd7HD9RjSG9atf8n8OOAhqLFTq-ws6R77oN2wh7Ya1Ua7_3Pvovvzs7vpZXZ9e3E1Pb3ODOfFkAmoK8K5qTgwsEB5rVltS8iNtgWUTRppAqwQutaCFqAF06VpihKIgjwnbBedLHvno-5sbWyfvtTKeXCdCgvplZN_J72byQf_LEsuBFQ0FdBlgQk-xmCb3ywQ-cVeLtnLxF5-s5eQQofrW38jK9LJwJaGOP8CZoN89GNIqON_tZ-gvZNh</recordid><startdate>20200917</startdate><enddate>20200917</enddate><creator>Zmuda Trzebiatowski, Marcin Adam</creator><creator>Kłosowski, Paweł</creator><creator>Skorek, Andrzej</creator><creator>Żerdzicki, Krzysztof</creator><creator>Lemski, Paweł</creator><creator>Koberda, Mateusz</creator><general>Nature Publishing Group UK</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20200917</creationdate><title>Nonlinear dynamic analysis of the pure “buckling” mechanism during blow-out trauma of the human orbit</title><author>Zmuda Trzebiatowski, Marcin Adam ; Kłosowski, Paweł ; Skorek, Andrzej ; Żerdzicki, Krzysztof ; Lemski, Paweł ; Koberda, Mateusz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-91d8044c84131e124db3de715cbe617f44cb01369bdb9261b93b7cf6710a15503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/114/2397</topic><topic>639/166/985</topic><topic>692/698/1671/63</topic><topic>Adult</topic><topic>Biomechanical Phenomena - physiology</topic><topic>Computer Simulation</topic><topic>Elastic Modulus</topic><topic>Female</topic><topic>Finite Element Analysis</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Models, Biological</topic><topic>multidisciplinary</topic><topic>Nonlinear Dynamics</topic><topic>Orbit - injuries</topic><topic>Orbital Fractures - pathology</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Skull - injuries</topic><topic>Stress, Mechanical</topic><topic>Tomography, X-Ray Computed - methods</topic><topic>Wounds and Injuries - pathology</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zmuda Trzebiatowski, Marcin Adam</creatorcontrib><creatorcontrib>Kłosowski, Paweł</creatorcontrib><creatorcontrib>Skorek, Andrzej</creatorcontrib><creatorcontrib>Żerdzicki, Krzysztof</creatorcontrib><creatorcontrib>Lemski, Paweł</creatorcontrib><creatorcontrib>Koberda, Mateusz</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zmuda Trzebiatowski, Marcin Adam</au><au>Kłosowski, Paweł</au><au>Skorek, Andrzej</au><au>Żerdzicki, Krzysztof</au><au>Lemski, Paweł</au><au>Koberda, Mateusz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear dynamic analysis of the pure “buckling” mechanism during blow-out trauma of the human orbit</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-09-17</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>15275</spage><pages>15275-</pages><artnum>15275</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Considering the interplay between orbital bones and intraorbital soft tissues, commonly accepted patterns of the blow-out type of trauma within the human orbit require more thorough investigation to assess the minimal health-threatening impact value. Two different three-dimensional finite element method (FEM) models of the human orbital region were developed to simulate the pure “buckling” mechanism of orbital wall fracture in two variants: the model of orbital bone elements and the model of orbital bone, orbit and intraorbital tissue elements. The mechanical properties of the so-defined numerical skull fragment were applied to the model according to the unique laboratory tensile stress tests performed on small and fragile specimens of orbital bones as well as using the data available in the literature. The nonlinear transient analysis of the contact problem between bodies that differ substantially in terms of the Young’s modulus was carried out to investigate the interaction of different bodies within an instant injury. Potential damage areas were found within the lower orbital wall as well as the destructive load values for both FEM skull models (7,660 N and 8,520 N). Moreover, numerical simulations were validated by comparing them with computed tomography scans of real injuries.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32943736</pmid><doi>10.1038/s41598-020-72186-1</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2020-09, Vol.10 (1), p.15275, Article 15275 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7499182 |
source | PubMed Central Free; Publicly Available Content Database; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 631/114/2397 639/166/985 692/698/1671/63 Adult Biomechanical Phenomena - physiology Computer Simulation Elastic Modulus Female Finite Element Analysis Humanities and Social Sciences Humans Male Middle Aged Models, Biological multidisciplinary Nonlinear Dynamics Orbit - injuries Orbital Fractures - pathology Science Science (multidisciplinary) Skull - injuries Stress, Mechanical Tomography, X-Ray Computed - methods Wounds and Injuries - pathology Young Adult |
title | Nonlinear dynamic analysis of the pure “buckling” mechanism during blow-out trauma of the human orbit |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T19%3A35%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20dynamic%20analysis%20of%20the%20pure%20%E2%80%9Cbuckling%E2%80%9D%20mechanism%20during%20blow-out%20trauma%20of%20the%20human%20orbit&rft.jtitle=Scientific%20reports&rft.au=Zmuda%20Trzebiatowski,%20Marcin%20Adam&rft.date=2020-09-17&rft.volume=10&rft.issue=1&rft.spage=15275&rft.pages=15275-&rft.artnum=15275&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-72186-1&rft_dat=%3Cpubmed_cross%3E32943736%3C/pubmed_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c446t-91d8044c84131e124db3de715cbe617f44cb01369bdb9261b93b7cf6710a15503%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/32943736&rfr_iscdi=true |