Loading…

Nonlinear dynamic analysis of the pure “buckling” mechanism during blow-out trauma of the human orbit

Considering the interplay between orbital bones and intraorbital soft tissues, commonly accepted patterns of the blow-out type of trauma within the human orbit require more thorough investigation to assess the minimal health-threatening impact value. Two different three-dimensional finite element me...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2020-09, Vol.10 (1), p.15275, Article 15275
Main Authors: Zmuda Trzebiatowski, Marcin Adam, Kłosowski, Paweł, Skorek, Andrzej, Żerdzicki, Krzysztof, Lemski, Paweł, Koberda, Mateusz
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c446t-91d8044c84131e124db3de715cbe617f44cb01369bdb9261b93b7cf6710a15503
cites cdi_FETCH-LOGICAL-c446t-91d8044c84131e124db3de715cbe617f44cb01369bdb9261b93b7cf6710a15503
container_end_page
container_issue 1
container_start_page 15275
container_title Scientific reports
container_volume 10
creator Zmuda Trzebiatowski, Marcin Adam
Kłosowski, Paweł
Skorek, Andrzej
Żerdzicki, Krzysztof
Lemski, Paweł
Koberda, Mateusz
description Considering the interplay between orbital bones and intraorbital soft tissues, commonly accepted patterns of the blow-out type of trauma within the human orbit require more thorough investigation to assess the minimal health-threatening impact value. Two different three-dimensional finite element method (FEM) models of the human orbital region were developed to simulate the pure “buckling” mechanism of orbital wall fracture in two variants: the model of orbital bone elements and the model of orbital bone, orbit and intraorbital tissue elements. The mechanical properties of the so-defined numerical skull fragment were applied to the model according to the unique laboratory tensile stress tests performed on small and fragile specimens of orbital bones as well as using the data available in the literature. The nonlinear transient analysis of the contact problem between bodies that differ substantially in terms of the Young’s modulus was carried out to investigate the interaction of different bodies within an instant injury. Potential damage areas were found within the lower orbital wall as well as the destructive load values for both FEM skull models (7,660 N and 8,520 N). Moreover, numerical simulations were validated by comparing them with computed tomography scans of real injuries.
doi_str_mv 10.1038/s41598-020-72186-1
format article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7499182</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>32943736</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-91d8044c84131e124db3de715cbe617f44cb01369bdb9261b93b7cf6710a15503</originalsourceid><addsrcrecordid>eNp9kE1OBCEUhInR6ES9gAvDBVp5QP-wMTET_xKjG10ToGkH7W4m0K2ZnQfRy3kS0XHMuJENFV5VPfIhdADkCAirjiOHXFQZoSQrKVRFBhtoQgnPM8oo3VzTO2g_xkeSTk4FB7GNdlgSrGTFBLkb37eutyrgetGrzhmsetUuoovYN3iYWTwfg8Ufr296NE_J-vDx-o47a2aqd7HD9RjSG9atf8n8OOAhqLFTq-ws6R77oN2wh7Ya1Ua7_3Pvovvzs7vpZXZ9e3E1Pb3ODOfFkAmoK8K5qTgwsEB5rVltS8iNtgWUTRppAqwQutaCFqAF06VpihKIgjwnbBedLHvno-5sbWyfvtTKeXCdCgvplZN_J72byQf_LEsuBFQ0FdBlgQk-xmCb3ywQ-cVeLtnLxF5-s5eQQofrW38jK9LJwJaGOP8CZoN89GNIqON_tZ-gvZNh</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nonlinear dynamic analysis of the pure “buckling” mechanism during blow-out trauma of the human orbit</title><source>PubMed Central Free</source><source>Publicly Available Content Database</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Zmuda Trzebiatowski, Marcin Adam ; Kłosowski, Paweł ; Skorek, Andrzej ; Żerdzicki, Krzysztof ; Lemski, Paweł ; Koberda, Mateusz</creator><creatorcontrib>Zmuda Trzebiatowski, Marcin Adam ; Kłosowski, Paweł ; Skorek, Andrzej ; Żerdzicki, Krzysztof ; Lemski, Paweł ; Koberda, Mateusz</creatorcontrib><description>Considering the interplay between orbital bones and intraorbital soft tissues, commonly accepted patterns of the blow-out type of trauma within the human orbit require more thorough investigation to assess the minimal health-threatening impact value. Two different three-dimensional finite element method (FEM) models of the human orbital region were developed to simulate the pure “buckling” mechanism of orbital wall fracture in two variants: the model of orbital bone elements and the model of orbital bone, orbit and intraorbital tissue elements. The mechanical properties of the so-defined numerical skull fragment were applied to the model according to the unique laboratory tensile stress tests performed on small and fragile specimens of orbital bones as well as using the data available in the literature. The nonlinear transient analysis of the contact problem between bodies that differ substantially in terms of the Young’s modulus was carried out to investigate the interaction of different bodies within an instant injury. Potential damage areas were found within the lower orbital wall as well as the destructive load values for both FEM skull models (7,660 N and 8,520 N). Moreover, numerical simulations were validated by comparing them with computed tomography scans of real injuries.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-72186-1</identifier><identifier>PMID: 32943736</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/114/2397 ; 639/166/985 ; 692/698/1671/63 ; Adult ; Biomechanical Phenomena - physiology ; Computer Simulation ; Elastic Modulus ; Female ; Finite Element Analysis ; Humanities and Social Sciences ; Humans ; Male ; Middle Aged ; Models, Biological ; multidisciplinary ; Nonlinear Dynamics ; Orbit - injuries ; Orbital Fractures - pathology ; Science ; Science (multidisciplinary) ; Skull - injuries ; Stress, Mechanical ; Tomography, X-Ray Computed - methods ; Wounds and Injuries - pathology ; Young Adult</subject><ispartof>Scientific reports, 2020-09, Vol.10 (1), p.15275, Article 15275</ispartof><rights>The Author(s) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-91d8044c84131e124db3de715cbe617f44cb01369bdb9261b93b7cf6710a15503</citedby><cites>FETCH-LOGICAL-c446t-91d8044c84131e124db3de715cbe617f44cb01369bdb9261b93b7cf6710a15503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7499182/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7499182/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32943736$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zmuda Trzebiatowski, Marcin Adam</creatorcontrib><creatorcontrib>Kłosowski, Paweł</creatorcontrib><creatorcontrib>Skorek, Andrzej</creatorcontrib><creatorcontrib>Żerdzicki, Krzysztof</creatorcontrib><creatorcontrib>Lemski, Paweł</creatorcontrib><creatorcontrib>Koberda, Mateusz</creatorcontrib><title>Nonlinear dynamic analysis of the pure “buckling” mechanism during blow-out trauma of the human orbit</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Considering the interplay between orbital bones and intraorbital soft tissues, commonly accepted patterns of the blow-out type of trauma within the human orbit require more thorough investigation to assess the minimal health-threatening impact value. Two different three-dimensional finite element method (FEM) models of the human orbital region were developed to simulate the pure “buckling” mechanism of orbital wall fracture in two variants: the model of orbital bone elements and the model of orbital bone, orbit and intraorbital tissue elements. The mechanical properties of the so-defined numerical skull fragment were applied to the model according to the unique laboratory tensile stress tests performed on small and fragile specimens of orbital bones as well as using the data available in the literature. The nonlinear transient analysis of the contact problem between bodies that differ substantially in terms of the Young’s modulus was carried out to investigate the interaction of different bodies within an instant injury. Potential damage areas were found within the lower orbital wall as well as the destructive load values for both FEM skull models (7,660 N and 8,520 N). Moreover, numerical simulations were validated by comparing them with computed tomography scans of real injuries.</description><subject>631/114/2397</subject><subject>639/166/985</subject><subject>692/698/1671/63</subject><subject>Adult</subject><subject>Biomechanical Phenomena - physiology</subject><subject>Computer Simulation</subject><subject>Elastic Modulus</subject><subject>Female</subject><subject>Finite Element Analysis</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Models, Biological</subject><subject>multidisciplinary</subject><subject>Nonlinear Dynamics</subject><subject>Orbit - injuries</subject><subject>Orbital Fractures - pathology</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Skull - injuries</subject><subject>Stress, Mechanical</subject><subject>Tomography, X-Ray Computed - methods</subject><subject>Wounds and Injuries - pathology</subject><subject>Young Adult</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OBCEUhInR6ES9gAvDBVp5QP-wMTET_xKjG10ToGkH7W4m0K2ZnQfRy3kS0XHMuJENFV5VPfIhdADkCAirjiOHXFQZoSQrKVRFBhtoQgnPM8oo3VzTO2g_xkeSTk4FB7GNdlgSrGTFBLkb37eutyrgetGrzhmsetUuoovYN3iYWTwfg8Ufr296NE_J-vDx-o47a2aqd7HD9RjSG9atf8n8OOAhqLFTq-ws6R77oN2wh7Ya1Ua7_3Pvovvzs7vpZXZ9e3E1Pb3ODOfFkAmoK8K5qTgwsEB5rVltS8iNtgWUTRppAqwQutaCFqAF06VpihKIgjwnbBedLHvno-5sbWyfvtTKeXCdCgvplZN_J72byQf_LEsuBFQ0FdBlgQk-xmCb3ywQ-cVeLtnLxF5-s5eQQofrW38jK9LJwJaGOP8CZoN89GNIqON_tZ-gvZNh</recordid><startdate>20200917</startdate><enddate>20200917</enddate><creator>Zmuda Trzebiatowski, Marcin Adam</creator><creator>Kłosowski, Paweł</creator><creator>Skorek, Andrzej</creator><creator>Żerdzicki, Krzysztof</creator><creator>Lemski, Paweł</creator><creator>Koberda, Mateusz</creator><general>Nature Publishing Group UK</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20200917</creationdate><title>Nonlinear dynamic analysis of the pure “buckling” mechanism during blow-out trauma of the human orbit</title><author>Zmuda Trzebiatowski, Marcin Adam ; Kłosowski, Paweł ; Skorek, Andrzej ; Żerdzicki, Krzysztof ; Lemski, Paweł ; Koberda, Mateusz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-91d8044c84131e124db3de715cbe617f44cb01369bdb9261b93b7cf6710a15503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/114/2397</topic><topic>639/166/985</topic><topic>692/698/1671/63</topic><topic>Adult</topic><topic>Biomechanical Phenomena - physiology</topic><topic>Computer Simulation</topic><topic>Elastic Modulus</topic><topic>Female</topic><topic>Finite Element Analysis</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Models, Biological</topic><topic>multidisciplinary</topic><topic>Nonlinear Dynamics</topic><topic>Orbit - injuries</topic><topic>Orbital Fractures - pathology</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Skull - injuries</topic><topic>Stress, Mechanical</topic><topic>Tomography, X-Ray Computed - methods</topic><topic>Wounds and Injuries - pathology</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zmuda Trzebiatowski, Marcin Adam</creatorcontrib><creatorcontrib>Kłosowski, Paweł</creatorcontrib><creatorcontrib>Skorek, Andrzej</creatorcontrib><creatorcontrib>Żerdzicki, Krzysztof</creatorcontrib><creatorcontrib>Lemski, Paweł</creatorcontrib><creatorcontrib>Koberda, Mateusz</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zmuda Trzebiatowski, Marcin Adam</au><au>Kłosowski, Paweł</au><au>Skorek, Andrzej</au><au>Żerdzicki, Krzysztof</au><au>Lemski, Paweł</au><au>Koberda, Mateusz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear dynamic analysis of the pure “buckling” mechanism during blow-out trauma of the human orbit</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-09-17</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>15275</spage><pages>15275-</pages><artnum>15275</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Considering the interplay between orbital bones and intraorbital soft tissues, commonly accepted patterns of the blow-out type of trauma within the human orbit require more thorough investigation to assess the minimal health-threatening impact value. Two different three-dimensional finite element method (FEM) models of the human orbital region were developed to simulate the pure “buckling” mechanism of orbital wall fracture in two variants: the model of orbital bone elements and the model of orbital bone, orbit and intraorbital tissue elements. The mechanical properties of the so-defined numerical skull fragment were applied to the model according to the unique laboratory tensile stress tests performed on small and fragile specimens of orbital bones as well as using the data available in the literature. The nonlinear transient analysis of the contact problem between bodies that differ substantially in terms of the Young’s modulus was carried out to investigate the interaction of different bodies within an instant injury. Potential damage areas were found within the lower orbital wall as well as the destructive load values for both FEM skull models (7,660 N and 8,520 N). Moreover, numerical simulations were validated by comparing them with computed tomography scans of real injuries.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32943736</pmid><doi>10.1038/s41598-020-72186-1</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2020-09, Vol.10 (1), p.15275, Article 15275
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7499182
source PubMed Central Free; Publicly Available Content Database; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access
subjects 631/114/2397
639/166/985
692/698/1671/63
Adult
Biomechanical Phenomena - physiology
Computer Simulation
Elastic Modulus
Female
Finite Element Analysis
Humanities and Social Sciences
Humans
Male
Middle Aged
Models, Biological
multidisciplinary
Nonlinear Dynamics
Orbit - injuries
Orbital Fractures - pathology
Science
Science (multidisciplinary)
Skull - injuries
Stress, Mechanical
Tomography, X-Ray Computed - methods
Wounds and Injuries - pathology
Young Adult
title Nonlinear dynamic analysis of the pure “buckling” mechanism during blow-out trauma of the human orbit
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T19%3A35%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20dynamic%20analysis%20of%20the%20pure%20%E2%80%9Cbuckling%E2%80%9D%20mechanism%20during%20blow-out%20trauma%20of%20the%20human%20orbit&rft.jtitle=Scientific%20reports&rft.au=Zmuda%20Trzebiatowski,%20Marcin%20Adam&rft.date=2020-09-17&rft.volume=10&rft.issue=1&rft.spage=15275&rft.pages=15275-&rft.artnum=15275&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-72186-1&rft_dat=%3Cpubmed_cross%3E32943736%3C/pubmed_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c446t-91d8044c84131e124db3de715cbe617f44cb01369bdb9261b93b7cf6710a15503%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/32943736&rfr_iscdi=true