Loading…

Highly active rubiscos discovered by systematic interrogation of natural sequence diversity

CO 2 is converted into biomass almost solely by the enzyme rubisco. The poor carboxylation properties of plant rubiscos have led to efforts that made it the most kinetically characterized enzyme, yet these studies focused on  100) were active in vitro , with the fastest having a turnover number of 2...

Full description

Saved in:
Bibliographic Details
Published in:The EMBO journal 2020-09, Vol.39 (18), p.e104081-n/a
Main Authors: Davidi, Dan, Shamshoum, Melina, Guo, Zhijun, Bar‐On, Yinon M, Prywes, Noam, Oz, Aia, Jablonska, Jagoda, Flamholz, Avi, Wernick, David G, Antonovsky, Niv, de Pins, Benoit, Shachar, Lior, Hochhauser, Dina, Peleg, Yoav, Albeck, Shira, Sharon, Itai, Mueller‐Cajar, Oliver, Milo, Ron
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5851-8d69120665decd8ccb6ed89c88b24ef0394ef5231a7e9bf77bd82bf6c2daa1d3
cites cdi_FETCH-LOGICAL-c5851-8d69120665decd8ccb6ed89c88b24ef0394ef5231a7e9bf77bd82bf6c2daa1d3
container_end_page n/a
container_issue 18
container_start_page e104081
container_title The EMBO journal
container_volume 39
creator Davidi, Dan
Shamshoum, Melina
Guo, Zhijun
Bar‐On, Yinon M
Prywes, Noam
Oz, Aia
Jablonska, Jagoda
Flamholz, Avi
Wernick, David G
Antonovsky, Niv
de Pins, Benoit
Shachar, Lior
Hochhauser, Dina
Peleg, Yoav
Albeck, Shira
Sharon, Itai
Mueller‐Cajar, Oliver
Milo, Ron
description CO 2 is converted into biomass almost solely by the enzyme rubisco. The poor carboxylation properties of plant rubiscos have led to efforts that made it the most kinetically characterized enzyme, yet these studies focused on  100) were active in vitro , with the fastest having a turnover number of 22 ± 1 s −1 —sixfold faster than the median plant rubisco and nearly twofold faster than the fastest measured rubisco to date. Unlike rubiscos from plants and cyanobacteria, the fastest variants discovered here are homodimers and exhibit a much simpler folding and activation kinetics. Our pipeline can be utilized to explore the kinetic space of other enzymes of interest, allowing us to get a better view of the biosynthetic potential of the biosphere. Synopsis The photosynthetic enzyme rubisco catalyzes the rate‐limiting step of carbon fixation in the Calvin‐Benson cycle. Here, analysis of previously uncharacterized natural form‐II and II/III rubiscos leads to identification of an enzyme with the fastest CO 2 fixation rate described to date. Analysis of available metagenomic data allows identification and phylogenetic clustering of rubisco large subunit sequences. 143 form‐II and II/III rubisco variants were synthesized, purified, and biochemically tested for their maximal carboxylation rate. Form‐II rubisco from soil bacterium Gallionella sp. was found to have six‐fold faster carboxylation rate than the median plant enzyme, and nearly two‐fold faster than the fastest measured rubisco to date. Graphical Abstract Metagenomic and biochemical analysis of previously uncharacterized naturally‐occurring form‐II and II/III rubiscos leads to identification of an enzyme with the fastest CO 2 fixation rate described to date.
doi_str_mv 10.15252/embj.2019104081
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7507306</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2410359908</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5851-8d69120665decd8ccb6ed89c88b24ef0394ef5231a7e9bf77bd82bf6c2daa1d3</originalsourceid><addsrcrecordid>eNqFkdFr1TAYxYM43HX67pMUfPGl2_elTZuCCDo255j4sjcfQpp8vculbWbSXul_b7Y7NycMXxJCfudwDoexNwiHKLjgRzS0m0MO2CCUIPEZW2FZQc6hFs_ZCniFeYmy2WcvY9wAgJA1vmD7BRcATYkr9uPMra_6JdNmclvKwty6aHzM7M21pUA2a5csLnGiQU_OZG6cKAS_Tg8_Zr7LRj3NQfdZpJ8zjYaSNOmim5ZXbK_TfaTXd_cBuzw9uTw-yy--f_l6_OkiN0IKzKWtGuRQVcKSsdKYtiIrGyNly0vqoGjSKXiBuqam7eq6tZK3XWW41RptccA-7myv53Yga2icUh51Hdygw6K8durxz-iu1NpvVS2gLqBKBu_vDIJPHeKkhtSe-l6P5OeoeIlQiKYBmdB3_6AbP4cxtUtUyQXKEnmiYEeZ4GMM1N2HQVC3w6mb4dTDcEny9u8S94I_SyXgww745Xpa_muoTr59Pn_kjzt5TMpxTeEh-JOZfgMiaLiy</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2442518412</pqid></control><display><type>article</type><title>Highly active rubiscos discovered by systematic interrogation of natural sequence diversity</title><source>PubMed Central</source><creator>Davidi, Dan ; Shamshoum, Melina ; Guo, Zhijun ; Bar‐On, Yinon M ; Prywes, Noam ; Oz, Aia ; Jablonska, Jagoda ; Flamholz, Avi ; Wernick, David G ; Antonovsky, Niv ; de Pins, Benoit ; Shachar, Lior ; Hochhauser, Dina ; Peleg, Yoav ; Albeck, Shira ; Sharon, Itai ; Mueller‐Cajar, Oliver ; Milo, Ron</creator><creatorcontrib>Davidi, Dan ; Shamshoum, Melina ; Guo, Zhijun ; Bar‐On, Yinon M ; Prywes, Noam ; Oz, Aia ; Jablonska, Jagoda ; Flamholz, Avi ; Wernick, David G ; Antonovsky, Niv ; de Pins, Benoit ; Shachar, Lior ; Hochhauser, Dina ; Peleg, Yoav ; Albeck, Shira ; Sharon, Itai ; Mueller‐Cajar, Oliver ; Milo, Ron</creatorcontrib><description>CO 2 is converted into biomass almost solely by the enzyme rubisco. The poor carboxylation properties of plant rubiscos have led to efforts that made it the most kinetically characterized enzyme, yet these studies focused on &lt; 5% of its natural diversity. Here, we searched for fast‐carboxylating variants by systematically mining genomic and metagenomic data. Approximately 33,000 unique rubisco sequences were identified and clustered into ≈ 1,000 similarity groups. We then synthesized, purified, and biochemically tested the carboxylation rates of 143 representatives, spanning all clusters of form‐II and form‐II/III rubiscos. Most variants (&gt; 100) were active in vitro , with the fastest having a turnover number of 22 ± 1 s −1 —sixfold faster than the median plant rubisco and nearly twofold faster than the fastest measured rubisco to date. Unlike rubiscos from plants and cyanobacteria, the fastest variants discovered here are homodimers and exhibit a much simpler folding and activation kinetics. Our pipeline can be utilized to explore the kinetic space of other enzymes of interest, allowing us to get a better view of the biosynthetic potential of the biosphere. Synopsis The photosynthetic enzyme rubisco catalyzes the rate‐limiting step of carbon fixation in the Calvin‐Benson cycle. Here, analysis of previously uncharacterized natural form‐II and II/III rubiscos leads to identification of an enzyme with the fastest CO 2 fixation rate described to date. Analysis of available metagenomic data allows identification and phylogenetic clustering of rubisco large subunit sequences. 143 form‐II and II/III rubisco variants were synthesized, purified, and biochemically tested for their maximal carboxylation rate. Form‐II rubisco from soil bacterium Gallionella sp. was found to have six‐fold faster carboxylation rate than the median plant enzyme, and nearly two‐fold faster than the fastest measured rubisco to date. Graphical Abstract Metagenomic and biochemical analysis of previously uncharacterized naturally‐occurring form‐II and II/III rubiscos leads to identification of an enzyme with the fastest CO 2 fixation rate described to date.</description><identifier>ISSN: 0261-4189</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.15252/embj.2019104081</identifier><identifier>PMID: 32500941</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Biosphere ; Carbon dioxide ; Carbon dioxide fixation ; Carbon fixation ; Carbon sequestration ; Carboxylation ; carboxylation rate ; Clustering ; Cyanobacteria ; Data Mining ; Databases, Nucleic Acid ; EMBO21 ; EMBO30 ; enhanced photosynthesis ; Enzymes ; Interrogation ; Isoenzymes - classification ; Isoenzymes - genetics ; metagenomic survey ; Metagenomics ; Photosynthesis ; Phylogeny ; Reaction kinetics ; Resource ; Ribulose-bisphosphate carboxylase ; Ribulose-Bisphosphate Carboxylase - classification ; Ribulose-Bisphosphate Carboxylase - genetics ; ribulose‐1,5‐bisphosphate carboxylase/oxygenase ; Soil bacteria ; Soil microorganisms</subject><ispartof>The EMBO journal, 2020-09, Vol.39 (18), p.e104081-n/a</ispartof><rights>The Author(s) 2020</rights><rights>2020 The Authors. Published under the terms of the CC BY 4.0 license</rights><rights>2020 The Authors. Published under the terms of the CC BY 4.0 license.</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5851-8d69120665decd8ccb6ed89c88b24ef0394ef5231a7e9bf77bd82bf6c2daa1d3</citedby><cites>FETCH-LOGICAL-c5851-8d69120665decd8ccb6ed89c88b24ef0394ef5231a7e9bf77bd82bf6c2daa1d3</cites><orcidid>0000-0003-1641-2299 ; 0000-0002-9278-5479</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7507306/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7507306/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32500941$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Davidi, Dan</creatorcontrib><creatorcontrib>Shamshoum, Melina</creatorcontrib><creatorcontrib>Guo, Zhijun</creatorcontrib><creatorcontrib>Bar‐On, Yinon M</creatorcontrib><creatorcontrib>Prywes, Noam</creatorcontrib><creatorcontrib>Oz, Aia</creatorcontrib><creatorcontrib>Jablonska, Jagoda</creatorcontrib><creatorcontrib>Flamholz, Avi</creatorcontrib><creatorcontrib>Wernick, David G</creatorcontrib><creatorcontrib>Antonovsky, Niv</creatorcontrib><creatorcontrib>de Pins, Benoit</creatorcontrib><creatorcontrib>Shachar, Lior</creatorcontrib><creatorcontrib>Hochhauser, Dina</creatorcontrib><creatorcontrib>Peleg, Yoav</creatorcontrib><creatorcontrib>Albeck, Shira</creatorcontrib><creatorcontrib>Sharon, Itai</creatorcontrib><creatorcontrib>Mueller‐Cajar, Oliver</creatorcontrib><creatorcontrib>Milo, Ron</creatorcontrib><title>Highly active rubiscos discovered by systematic interrogation of natural sequence diversity</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><addtitle>EMBO J</addtitle><description>CO 2 is converted into biomass almost solely by the enzyme rubisco. The poor carboxylation properties of plant rubiscos have led to efforts that made it the most kinetically characterized enzyme, yet these studies focused on &lt; 5% of its natural diversity. Here, we searched for fast‐carboxylating variants by systematically mining genomic and metagenomic data. Approximately 33,000 unique rubisco sequences were identified and clustered into ≈ 1,000 similarity groups. We then synthesized, purified, and biochemically tested the carboxylation rates of 143 representatives, spanning all clusters of form‐II and form‐II/III rubiscos. Most variants (&gt; 100) were active in vitro , with the fastest having a turnover number of 22 ± 1 s −1 —sixfold faster than the median plant rubisco and nearly twofold faster than the fastest measured rubisco to date. Unlike rubiscos from plants and cyanobacteria, the fastest variants discovered here are homodimers and exhibit a much simpler folding and activation kinetics. Our pipeline can be utilized to explore the kinetic space of other enzymes of interest, allowing us to get a better view of the biosynthetic potential of the biosphere. Synopsis The photosynthetic enzyme rubisco catalyzes the rate‐limiting step of carbon fixation in the Calvin‐Benson cycle. Here, analysis of previously uncharacterized natural form‐II and II/III rubiscos leads to identification of an enzyme with the fastest CO 2 fixation rate described to date. Analysis of available metagenomic data allows identification and phylogenetic clustering of rubisco large subunit sequences. 143 form‐II and II/III rubisco variants were synthesized, purified, and biochemically tested for their maximal carboxylation rate. Form‐II rubisco from soil bacterium Gallionella sp. was found to have six‐fold faster carboxylation rate than the median plant enzyme, and nearly two‐fold faster than the fastest measured rubisco to date. Graphical Abstract Metagenomic and biochemical analysis of previously uncharacterized naturally‐occurring form‐II and II/III rubiscos leads to identification of an enzyme with the fastest CO 2 fixation rate described to date.</description><subject>Biosphere</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide fixation</subject><subject>Carbon fixation</subject><subject>Carbon sequestration</subject><subject>Carboxylation</subject><subject>carboxylation rate</subject><subject>Clustering</subject><subject>Cyanobacteria</subject><subject>Data Mining</subject><subject>Databases, Nucleic Acid</subject><subject>EMBO21</subject><subject>EMBO30</subject><subject>enhanced photosynthesis</subject><subject>Enzymes</subject><subject>Interrogation</subject><subject>Isoenzymes - classification</subject><subject>Isoenzymes - genetics</subject><subject>metagenomic survey</subject><subject>Metagenomics</subject><subject>Photosynthesis</subject><subject>Phylogeny</subject><subject>Reaction kinetics</subject><subject>Resource</subject><subject>Ribulose-bisphosphate carboxylase</subject><subject>Ribulose-Bisphosphate Carboxylase - classification</subject><subject>Ribulose-Bisphosphate Carboxylase - genetics</subject><subject>ribulose‐1,5‐bisphosphate carboxylase/oxygenase</subject><subject>Soil bacteria</subject><subject>Soil microorganisms</subject><issn>0261-4189</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkdFr1TAYxYM43HX67pMUfPGl2_elTZuCCDo255j4sjcfQpp8vculbWbSXul_b7Y7NycMXxJCfudwDoexNwiHKLjgRzS0m0MO2CCUIPEZW2FZQc6hFs_ZCniFeYmy2WcvY9wAgJA1vmD7BRcATYkr9uPMra_6JdNmclvKwty6aHzM7M21pUA2a5csLnGiQU_OZG6cKAS_Tg8_Zr7LRj3NQfdZpJ8zjYaSNOmim5ZXbK_TfaTXd_cBuzw9uTw-yy--f_l6_OkiN0IKzKWtGuRQVcKSsdKYtiIrGyNly0vqoGjSKXiBuqam7eq6tZK3XWW41RptccA-7myv53Yga2icUh51Hdygw6K8durxz-iu1NpvVS2gLqBKBu_vDIJPHeKkhtSe-l6P5OeoeIlQiKYBmdB3_6AbP4cxtUtUyQXKEnmiYEeZ4GMM1N2HQVC3w6mb4dTDcEny9u8S94I_SyXgww745Xpa_muoTr59Pn_kjzt5TMpxTeEh-JOZfgMiaLiy</recordid><startdate>20200915</startdate><enddate>20200915</enddate><creator>Davidi, Dan</creator><creator>Shamshoum, Melina</creator><creator>Guo, Zhijun</creator><creator>Bar‐On, Yinon M</creator><creator>Prywes, Noam</creator><creator>Oz, Aia</creator><creator>Jablonska, Jagoda</creator><creator>Flamholz, Avi</creator><creator>Wernick, David G</creator><creator>Antonovsky, Niv</creator><creator>de Pins, Benoit</creator><creator>Shachar, Lior</creator><creator>Hochhauser, Dina</creator><creator>Peleg, Yoav</creator><creator>Albeck, Shira</creator><creator>Sharon, Itai</creator><creator>Mueller‐Cajar, Oliver</creator><creator>Milo, Ron</creator><general>Nature Publishing Group UK</general><general>Blackwell Publishing Ltd</general><general>John Wiley and Sons Inc</general><scope>C6C</scope><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1641-2299</orcidid><orcidid>https://orcid.org/0000-0002-9278-5479</orcidid></search><sort><creationdate>20200915</creationdate><title>Highly active rubiscos discovered by systematic interrogation of natural sequence diversity</title><author>Davidi, Dan ; Shamshoum, Melina ; Guo, Zhijun ; Bar‐On, Yinon M ; Prywes, Noam ; Oz, Aia ; Jablonska, Jagoda ; Flamholz, Avi ; Wernick, David G ; Antonovsky, Niv ; de Pins, Benoit ; Shachar, Lior ; Hochhauser, Dina ; Peleg, Yoav ; Albeck, Shira ; Sharon, Itai ; Mueller‐Cajar, Oliver ; Milo, Ron</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5851-8d69120665decd8ccb6ed89c88b24ef0394ef5231a7e9bf77bd82bf6c2daa1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biosphere</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide fixation</topic><topic>Carbon fixation</topic><topic>Carbon sequestration</topic><topic>Carboxylation</topic><topic>carboxylation rate</topic><topic>Clustering</topic><topic>Cyanobacteria</topic><topic>Data Mining</topic><topic>Databases, Nucleic Acid</topic><topic>EMBO21</topic><topic>EMBO30</topic><topic>enhanced photosynthesis</topic><topic>Enzymes</topic><topic>Interrogation</topic><topic>Isoenzymes - classification</topic><topic>Isoenzymes - genetics</topic><topic>metagenomic survey</topic><topic>Metagenomics</topic><topic>Photosynthesis</topic><topic>Phylogeny</topic><topic>Reaction kinetics</topic><topic>Resource</topic><topic>Ribulose-bisphosphate carboxylase</topic><topic>Ribulose-Bisphosphate Carboxylase - classification</topic><topic>Ribulose-Bisphosphate Carboxylase - genetics</topic><topic>ribulose‐1,5‐bisphosphate carboxylase/oxygenase</topic><topic>Soil bacteria</topic><topic>Soil microorganisms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Davidi, Dan</creatorcontrib><creatorcontrib>Shamshoum, Melina</creatorcontrib><creatorcontrib>Guo, Zhijun</creatorcontrib><creatorcontrib>Bar‐On, Yinon M</creatorcontrib><creatorcontrib>Prywes, Noam</creatorcontrib><creatorcontrib>Oz, Aia</creatorcontrib><creatorcontrib>Jablonska, Jagoda</creatorcontrib><creatorcontrib>Flamholz, Avi</creatorcontrib><creatorcontrib>Wernick, David G</creatorcontrib><creatorcontrib>Antonovsky, Niv</creatorcontrib><creatorcontrib>de Pins, Benoit</creatorcontrib><creatorcontrib>Shachar, Lior</creatorcontrib><creatorcontrib>Hochhauser, Dina</creatorcontrib><creatorcontrib>Peleg, Yoav</creatorcontrib><creatorcontrib>Albeck, Shira</creatorcontrib><creatorcontrib>Sharon, Itai</creatorcontrib><creatorcontrib>Mueller‐Cajar, Oliver</creatorcontrib><creatorcontrib>Milo, Ron</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Wiley-Blackwell Open Access Collection</collection><collection>Wiley Online Library Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Davidi, Dan</au><au>Shamshoum, Melina</au><au>Guo, Zhijun</au><au>Bar‐On, Yinon M</au><au>Prywes, Noam</au><au>Oz, Aia</au><au>Jablonska, Jagoda</au><au>Flamholz, Avi</au><au>Wernick, David G</au><au>Antonovsky, Niv</au><au>de Pins, Benoit</au><au>Shachar, Lior</au><au>Hochhauser, Dina</au><au>Peleg, Yoav</au><au>Albeck, Shira</au><au>Sharon, Itai</au><au>Mueller‐Cajar, Oliver</au><au>Milo, Ron</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly active rubiscos discovered by systematic interrogation of natural sequence diversity</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><addtitle>EMBO J</addtitle><date>2020-09-15</date><risdate>2020</risdate><volume>39</volume><issue>18</issue><spage>e104081</spage><epage>n/a</epage><pages>e104081-n/a</pages><issn>0261-4189</issn><eissn>1460-2075</eissn><abstract>CO 2 is converted into biomass almost solely by the enzyme rubisco. The poor carboxylation properties of plant rubiscos have led to efforts that made it the most kinetically characterized enzyme, yet these studies focused on &lt; 5% of its natural diversity. Here, we searched for fast‐carboxylating variants by systematically mining genomic and metagenomic data. Approximately 33,000 unique rubisco sequences were identified and clustered into ≈ 1,000 similarity groups. We then synthesized, purified, and biochemically tested the carboxylation rates of 143 representatives, spanning all clusters of form‐II and form‐II/III rubiscos. Most variants (&gt; 100) were active in vitro , with the fastest having a turnover number of 22 ± 1 s −1 —sixfold faster than the median plant rubisco and nearly twofold faster than the fastest measured rubisco to date. Unlike rubiscos from plants and cyanobacteria, the fastest variants discovered here are homodimers and exhibit a much simpler folding and activation kinetics. Our pipeline can be utilized to explore the kinetic space of other enzymes of interest, allowing us to get a better view of the biosynthetic potential of the biosphere. Synopsis The photosynthetic enzyme rubisco catalyzes the rate‐limiting step of carbon fixation in the Calvin‐Benson cycle. Here, analysis of previously uncharacterized natural form‐II and II/III rubiscos leads to identification of an enzyme with the fastest CO 2 fixation rate described to date. Analysis of available metagenomic data allows identification and phylogenetic clustering of rubisco large subunit sequences. 143 form‐II and II/III rubisco variants were synthesized, purified, and biochemically tested for their maximal carboxylation rate. Form‐II rubisco from soil bacterium Gallionella sp. was found to have six‐fold faster carboxylation rate than the median plant enzyme, and nearly two‐fold faster than the fastest measured rubisco to date. Graphical Abstract Metagenomic and biochemical analysis of previously uncharacterized naturally‐occurring form‐II and II/III rubiscos leads to identification of an enzyme with the fastest CO 2 fixation rate described to date.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32500941</pmid><doi>10.15252/embj.2019104081</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1641-2299</orcidid><orcidid>https://orcid.org/0000-0002-9278-5479</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0261-4189
ispartof The EMBO journal, 2020-09, Vol.39 (18), p.e104081-n/a
issn 0261-4189
1460-2075
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7507306
source PubMed Central
subjects Biosphere
Carbon dioxide
Carbon dioxide fixation
Carbon fixation
Carbon sequestration
Carboxylation
carboxylation rate
Clustering
Cyanobacteria
Data Mining
Databases, Nucleic Acid
EMBO21
EMBO30
enhanced photosynthesis
Enzymes
Interrogation
Isoenzymes - classification
Isoenzymes - genetics
metagenomic survey
Metagenomics
Photosynthesis
Phylogeny
Reaction kinetics
Resource
Ribulose-bisphosphate carboxylase
Ribulose-Bisphosphate Carboxylase - classification
Ribulose-Bisphosphate Carboxylase - genetics
ribulose‐1,5‐bisphosphate carboxylase/oxygenase
Soil bacteria
Soil microorganisms
title Highly active rubiscos discovered by systematic interrogation of natural sequence diversity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T10%3A04%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20active%20rubiscos%20discovered%20by%20systematic%20interrogation%20of%20natural%20sequence%20diversity&rft.jtitle=The%20EMBO%20journal&rft.au=Davidi,%20Dan&rft.date=2020-09-15&rft.volume=39&rft.issue=18&rft.spage=e104081&rft.epage=n/a&rft.pages=e104081-n/a&rft.issn=0261-4189&rft.eissn=1460-2075&rft_id=info:doi/10.15252/embj.2019104081&rft_dat=%3Cproquest_pubme%3E2410359908%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5851-8d69120665decd8ccb6ed89c88b24ef0394ef5231a7e9bf77bd82bf6c2daa1d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2442518412&rft_id=info:pmid/32500941&rfr_iscdi=true