Loading…

Incidence of Quantum Confinement on Dark Triplet Excitons in Carbon Nanotubes

The photophysics of single-wall carbon nanotubes (SWCNTs) is intensively studied due to their potential application in light harvesting and optoelectronics. Excited states of SWCNTs form strongly bound electron–hole pairs, excitons, of which only singlet excitons participate in application relevant...

Full description

Saved in:
Bibliographic Details
Published in:ACS nano 2020-09, Vol.14 (9), p.11254-11261
Main Authors: Palotás, J, Negyedi, M, Kollarics, S, Bojtor, A, Rohringer, P, Pichler, T, Simon, F
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a406t-9e30dae0978a990276577ca0c11ec5e06ddb0fc278267fa19cedb0b2109960823
cites cdi_FETCH-LOGICAL-a406t-9e30dae0978a990276577ca0c11ec5e06ddb0fc278267fa19cedb0b2109960823
container_end_page 11261
container_issue 9
container_start_page 11254
container_title ACS nano
container_volume 14
creator Palotás, J
Negyedi, M
Kollarics, S
Bojtor, A
Rohringer, P
Pichler, T
Simon, F
description The photophysics of single-wall carbon nanotubes (SWCNTs) is intensively studied due to their potential application in light harvesting and optoelectronics. Excited states of SWCNTs form strongly bound electron–hole pairs, excitons, of which only singlet excitons participate in application relevant optical transitions. Long-living spin-triplet states hinder applications, but they emerge as candidates for quantum information storage. Therefore, knowledge of the triplet exciton energy structure, in particular in a SWCNT chirality dependent manner, is greatly desired. We report the observation of light emission from triplet state recombination, i.e., phosphorescence, for several SWCNT chiralities using a purpose-built spectrometer. This yields the singlet–triplet gap as a function of the SWCNT diameter, and it follows predictions based on quantum confinement effects. Saturation under high microwave power (up to 10 W) irradiation allows the spin-relaxation time for triplet states to be determined. Our study sensitively discriminates whether the lowest optically active state is populated from an excited state on the same nanotube or through Förster exciton energy transfer from a neighboring nanotube.
doi_str_mv 10.1021/acsnano.0c03139
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7513465</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2434472868</sourcerecordid><originalsourceid>FETCH-LOGICAL-a406t-9e30dae0978a990276577ca0c11ec5e06ddb0fc278267fa19cedb0b2109960823</originalsourceid><addsrcrecordid>eNp1UU1r3DAQFaEhH9uec9UxUDY7km3JugTKdtssbFICKfQmZHmcamtLW8kOzb-vwi6BHHKaYd6bN495hFwwuGLA2cLY5I0PV2ChYIU6ImdMFWIOtfj14bWv2Ck5T2kLUMlaihNyWnCpgEt5Rm7X3roWvUUaOno_GT9OA10G3zmPA_qRBk-_mviHPkS363Gkq3_WjcEn6jxdmthk_C5bGKcG00dy3Jk-4adDnZGf31YPy5v55sf39fLLZm5KEONcYQGtQVCyNurFiKiktAYsY2grBNG2DXSWy5oL2RmmLOZBwxkoJaDmxYxc73V3UzNga7PPaHq9i24w8VkH4_RbxLvf-jE8aVmxohRVFrg8CMTwd8I06sEli31vPIYpaV4WZSl5LepMXeypNoaUInavZxjolxD0IQR9CCFvfN5vZEBvwxR9_sW77P-OVonl</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2434472868</pqid></control><display><type>article</type><title>Incidence of Quantum Confinement on Dark Triplet Excitons in Carbon Nanotubes</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Palotás, J ; Negyedi, M ; Kollarics, S ; Bojtor, A ; Rohringer, P ; Pichler, T ; Simon, F</creator><creatorcontrib>Palotás, J ; Negyedi, M ; Kollarics, S ; Bojtor, A ; Rohringer, P ; Pichler, T ; Simon, F</creatorcontrib><description>The photophysics of single-wall carbon nanotubes (SWCNTs) is intensively studied due to their potential application in light harvesting and optoelectronics. Excited states of SWCNTs form strongly bound electron–hole pairs, excitons, of which only singlet excitons participate in application relevant optical transitions. Long-living spin-triplet states hinder applications, but they emerge as candidates for quantum information storage. Therefore, knowledge of the triplet exciton energy structure, in particular in a SWCNT chirality dependent manner, is greatly desired. We report the observation of light emission from triplet state recombination, i.e., phosphorescence, for several SWCNT chiralities using a purpose-built spectrometer. This yields the singlet–triplet gap as a function of the SWCNT diameter, and it follows predictions based on quantum confinement effects. Saturation under high microwave power (up to 10 W) irradiation allows the spin-relaxation time for triplet states to be determined. Our study sensitively discriminates whether the lowest optically active state is populated from an excited state on the same nanotube or through Förster exciton energy transfer from a neighboring nanotube.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.0c03139</identifier><identifier>PMID: 32790277</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS nano, 2020-09, Vol.14 (9), p.11254-11261</ispartof><rights>Copyright © 2020 American Chemical Society 2020 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a406t-9e30dae0978a990276577ca0c11ec5e06ddb0fc278267fa19cedb0b2109960823</citedby><cites>FETCH-LOGICAL-a406t-9e30dae0978a990276577ca0c11ec5e06ddb0fc278267fa19cedb0b2109960823</cites><orcidid>0000-0001-9822-4309 ; 0000-0001-5377-9896</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids></links><search><creatorcontrib>Palotás, J</creatorcontrib><creatorcontrib>Negyedi, M</creatorcontrib><creatorcontrib>Kollarics, S</creatorcontrib><creatorcontrib>Bojtor, A</creatorcontrib><creatorcontrib>Rohringer, P</creatorcontrib><creatorcontrib>Pichler, T</creatorcontrib><creatorcontrib>Simon, F</creatorcontrib><title>Incidence of Quantum Confinement on Dark Triplet Excitons in Carbon Nanotubes</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>The photophysics of single-wall carbon nanotubes (SWCNTs) is intensively studied due to their potential application in light harvesting and optoelectronics. Excited states of SWCNTs form strongly bound electron–hole pairs, excitons, of which only singlet excitons participate in application relevant optical transitions. Long-living spin-triplet states hinder applications, but they emerge as candidates for quantum information storage. Therefore, knowledge of the triplet exciton energy structure, in particular in a SWCNT chirality dependent manner, is greatly desired. We report the observation of light emission from triplet state recombination, i.e., phosphorescence, for several SWCNT chiralities using a purpose-built spectrometer. This yields the singlet–triplet gap as a function of the SWCNT diameter, and it follows predictions based on quantum confinement effects. Saturation under high microwave power (up to 10 W) irradiation allows the spin-relaxation time for triplet states to be determined. Our study sensitively discriminates whether the lowest optically active state is populated from an excited state on the same nanotube or through Förster exciton energy transfer from a neighboring nanotube.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1UU1r3DAQFaEhH9uec9UxUDY7km3JugTKdtssbFICKfQmZHmcamtLW8kOzb-vwi6BHHKaYd6bN495hFwwuGLA2cLY5I0PV2ChYIU6ImdMFWIOtfj14bWv2Ck5T2kLUMlaihNyWnCpgEt5Rm7X3roWvUUaOno_GT9OA10G3zmPA_qRBk-_mviHPkS363Gkq3_WjcEn6jxdmthk_C5bGKcG00dy3Jk-4adDnZGf31YPy5v55sf39fLLZm5KEONcYQGtQVCyNurFiKiktAYsY2grBNG2DXSWy5oL2RmmLOZBwxkoJaDmxYxc73V3UzNga7PPaHq9i24w8VkH4_RbxLvf-jE8aVmxohRVFrg8CMTwd8I06sEli31vPIYpaV4WZSl5LepMXeypNoaUInavZxjolxD0IQR9CCFvfN5vZEBvwxR9_sW77P-OVonl</recordid><startdate>20200922</startdate><enddate>20200922</enddate><creator>Palotás, J</creator><creator>Negyedi, M</creator><creator>Kollarics, S</creator><creator>Bojtor, A</creator><creator>Rohringer, P</creator><creator>Pichler, T</creator><creator>Simon, F</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9822-4309</orcidid><orcidid>https://orcid.org/0000-0001-5377-9896</orcidid></search><sort><creationdate>20200922</creationdate><title>Incidence of Quantum Confinement on Dark Triplet Excitons in Carbon Nanotubes</title><author>Palotás, J ; Negyedi, M ; Kollarics, S ; Bojtor, A ; Rohringer, P ; Pichler, T ; Simon, F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a406t-9e30dae0978a990276577ca0c11ec5e06ddb0fc278267fa19cedb0b2109960823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Palotás, J</creatorcontrib><creatorcontrib>Negyedi, M</creatorcontrib><creatorcontrib>Kollarics, S</creatorcontrib><creatorcontrib>Bojtor, A</creatorcontrib><creatorcontrib>Rohringer, P</creatorcontrib><creatorcontrib>Pichler, T</creatorcontrib><creatorcontrib>Simon, F</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Palotás, J</au><au>Negyedi, M</au><au>Kollarics, S</au><au>Bojtor, A</au><au>Rohringer, P</au><au>Pichler, T</au><au>Simon, F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Incidence of Quantum Confinement on Dark Triplet Excitons in Carbon Nanotubes</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2020-09-22</date><risdate>2020</risdate><volume>14</volume><issue>9</issue><spage>11254</spage><epage>11261</epage><pages>11254-11261</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>The photophysics of single-wall carbon nanotubes (SWCNTs) is intensively studied due to their potential application in light harvesting and optoelectronics. Excited states of SWCNTs form strongly bound electron–hole pairs, excitons, of which only singlet excitons participate in application relevant optical transitions. Long-living spin-triplet states hinder applications, but they emerge as candidates for quantum information storage. Therefore, knowledge of the triplet exciton energy structure, in particular in a SWCNT chirality dependent manner, is greatly desired. We report the observation of light emission from triplet state recombination, i.e., phosphorescence, for several SWCNT chiralities using a purpose-built spectrometer. This yields the singlet–triplet gap as a function of the SWCNT diameter, and it follows predictions based on quantum confinement effects. Saturation under high microwave power (up to 10 W) irradiation allows the spin-relaxation time for triplet states to be determined. Our study sensitively discriminates whether the lowest optically active state is populated from an excited state on the same nanotube or through Förster exciton energy transfer from a neighboring nanotube.</abstract><pub>American Chemical Society</pub><pmid>32790277</pmid><doi>10.1021/acsnano.0c03139</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-9822-4309</orcidid><orcidid>https://orcid.org/0000-0001-5377-9896</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2020-09, Vol.14 (9), p.11254-11261
issn 1936-0851
1936-086X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7513465
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Incidence of Quantum Confinement on Dark Triplet Excitons in Carbon Nanotubes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A34%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Incidence%20of%20Quantum%20Confinement%20on%20Dark%20Triplet%20Excitons%20in%20Carbon%20Nanotubes&rft.jtitle=ACS%20nano&rft.au=Palota%CC%81s,%20J&rft.date=2020-09-22&rft.volume=14&rft.issue=9&rft.spage=11254&rft.epage=11261&rft.pages=11254-11261&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.0c03139&rft_dat=%3Cproquest_pubme%3E2434472868%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a406t-9e30dae0978a990276577ca0c11ec5e06ddb0fc278267fa19cedb0b2109960823%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2434472868&rft_id=info:pmid/32790277&rfr_iscdi=true