Loading…
Incidence of Quantum Confinement on Dark Triplet Excitons in Carbon Nanotubes
The photophysics of single-wall carbon nanotubes (SWCNTs) is intensively studied due to their potential application in light harvesting and optoelectronics. Excited states of SWCNTs form strongly bound electron–hole pairs, excitons, of which only singlet excitons participate in application relevant...
Saved in:
Published in: | ACS nano 2020-09, Vol.14 (9), p.11254-11261 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a406t-9e30dae0978a990276577ca0c11ec5e06ddb0fc278267fa19cedb0b2109960823 |
---|---|
cites | cdi_FETCH-LOGICAL-a406t-9e30dae0978a990276577ca0c11ec5e06ddb0fc278267fa19cedb0b2109960823 |
container_end_page | 11261 |
container_issue | 9 |
container_start_page | 11254 |
container_title | ACS nano |
container_volume | 14 |
creator | Palotás, J Negyedi, M Kollarics, S Bojtor, A Rohringer, P Pichler, T Simon, F |
description | The photophysics of single-wall carbon nanotubes (SWCNTs) is intensively studied due to their potential application in light harvesting and optoelectronics. Excited states of SWCNTs form strongly bound electron–hole pairs, excitons, of which only singlet excitons participate in application relevant optical transitions. Long-living spin-triplet states hinder applications, but they emerge as candidates for quantum information storage. Therefore, knowledge of the triplet exciton energy structure, in particular in a SWCNT chirality dependent manner, is greatly desired. We report the observation of light emission from triplet state recombination, i.e., phosphorescence, for several SWCNT chiralities using a purpose-built spectrometer. This yields the singlet–triplet gap as a function of the SWCNT diameter, and it follows predictions based on quantum confinement effects. Saturation under high microwave power (up to 10 W) irradiation allows the spin-relaxation time for triplet states to be determined. Our study sensitively discriminates whether the lowest optically active state is populated from an excited state on the same nanotube or through Förster exciton energy transfer from a neighboring nanotube. |
doi_str_mv | 10.1021/acsnano.0c03139 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7513465</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2434472868</sourcerecordid><originalsourceid>FETCH-LOGICAL-a406t-9e30dae0978a990276577ca0c11ec5e06ddb0fc278267fa19cedb0b2109960823</originalsourceid><addsrcrecordid>eNp1UU1r3DAQFaEhH9uec9UxUDY7km3JugTKdtssbFICKfQmZHmcamtLW8kOzb-vwi6BHHKaYd6bN495hFwwuGLA2cLY5I0PV2ChYIU6ImdMFWIOtfj14bWv2Ck5T2kLUMlaihNyWnCpgEt5Rm7X3roWvUUaOno_GT9OA10G3zmPA_qRBk-_mviHPkS363Gkq3_WjcEn6jxdmthk_C5bGKcG00dy3Jk-4adDnZGf31YPy5v55sf39fLLZm5KEONcYQGtQVCyNurFiKiktAYsY2grBNG2DXSWy5oL2RmmLOZBwxkoJaDmxYxc73V3UzNga7PPaHq9i24w8VkH4_RbxLvf-jE8aVmxohRVFrg8CMTwd8I06sEli31vPIYpaV4WZSl5LepMXeypNoaUInavZxjolxD0IQR9CCFvfN5vZEBvwxR9_sW77P-OVonl</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2434472868</pqid></control><display><type>article</type><title>Incidence of Quantum Confinement on Dark Triplet Excitons in Carbon Nanotubes</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Palotás, J ; Negyedi, M ; Kollarics, S ; Bojtor, A ; Rohringer, P ; Pichler, T ; Simon, F</creator><creatorcontrib>Palotás, J ; Negyedi, M ; Kollarics, S ; Bojtor, A ; Rohringer, P ; Pichler, T ; Simon, F</creatorcontrib><description>The photophysics of single-wall carbon nanotubes (SWCNTs) is intensively studied due to their potential application in light harvesting and optoelectronics. Excited states of SWCNTs form strongly bound electron–hole pairs, excitons, of which only singlet excitons participate in application relevant optical transitions. Long-living spin-triplet states hinder applications, but they emerge as candidates for quantum information storage. Therefore, knowledge of the triplet exciton energy structure, in particular in a SWCNT chirality dependent manner, is greatly desired. We report the observation of light emission from triplet state recombination, i.e., phosphorescence, for several SWCNT chiralities using a purpose-built spectrometer. This yields the singlet–triplet gap as a function of the SWCNT diameter, and it follows predictions based on quantum confinement effects. Saturation under high microwave power (up to 10 W) irradiation allows the spin-relaxation time for triplet states to be determined. Our study sensitively discriminates whether the lowest optically active state is populated from an excited state on the same nanotube or through Förster exciton energy transfer from a neighboring nanotube.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.0c03139</identifier><identifier>PMID: 32790277</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS nano, 2020-09, Vol.14 (9), p.11254-11261</ispartof><rights>Copyright © 2020 American Chemical Society 2020 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a406t-9e30dae0978a990276577ca0c11ec5e06ddb0fc278267fa19cedb0b2109960823</citedby><cites>FETCH-LOGICAL-a406t-9e30dae0978a990276577ca0c11ec5e06ddb0fc278267fa19cedb0b2109960823</cites><orcidid>0000-0001-9822-4309 ; 0000-0001-5377-9896</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids></links><search><creatorcontrib>Palotás, J</creatorcontrib><creatorcontrib>Negyedi, M</creatorcontrib><creatorcontrib>Kollarics, S</creatorcontrib><creatorcontrib>Bojtor, A</creatorcontrib><creatorcontrib>Rohringer, P</creatorcontrib><creatorcontrib>Pichler, T</creatorcontrib><creatorcontrib>Simon, F</creatorcontrib><title>Incidence of Quantum Confinement on Dark Triplet Excitons in Carbon Nanotubes</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>The photophysics of single-wall carbon nanotubes (SWCNTs) is intensively studied due to their potential application in light harvesting and optoelectronics. Excited states of SWCNTs form strongly bound electron–hole pairs, excitons, of which only singlet excitons participate in application relevant optical transitions. Long-living spin-triplet states hinder applications, but they emerge as candidates for quantum information storage. Therefore, knowledge of the triplet exciton energy structure, in particular in a SWCNT chirality dependent manner, is greatly desired. We report the observation of light emission from triplet state recombination, i.e., phosphorescence, for several SWCNT chiralities using a purpose-built spectrometer. This yields the singlet–triplet gap as a function of the SWCNT diameter, and it follows predictions based on quantum confinement effects. Saturation under high microwave power (up to 10 W) irradiation allows the spin-relaxation time for triplet states to be determined. Our study sensitively discriminates whether the lowest optically active state is populated from an excited state on the same nanotube or through Förster exciton energy transfer from a neighboring nanotube.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1UU1r3DAQFaEhH9uec9UxUDY7km3JugTKdtssbFICKfQmZHmcamtLW8kOzb-vwi6BHHKaYd6bN495hFwwuGLA2cLY5I0PV2ChYIU6ImdMFWIOtfj14bWv2Ck5T2kLUMlaihNyWnCpgEt5Rm7X3roWvUUaOno_GT9OA10G3zmPA_qRBk-_mviHPkS363Gkq3_WjcEn6jxdmthk_C5bGKcG00dy3Jk-4adDnZGf31YPy5v55sf39fLLZm5KEONcYQGtQVCyNurFiKiktAYsY2grBNG2DXSWy5oL2RmmLOZBwxkoJaDmxYxc73V3UzNga7PPaHq9i24w8VkH4_RbxLvf-jE8aVmxohRVFrg8CMTwd8I06sEli31vPIYpaV4WZSl5LepMXeypNoaUInavZxjolxD0IQR9CCFvfN5vZEBvwxR9_sW77P-OVonl</recordid><startdate>20200922</startdate><enddate>20200922</enddate><creator>Palotás, J</creator><creator>Negyedi, M</creator><creator>Kollarics, S</creator><creator>Bojtor, A</creator><creator>Rohringer, P</creator><creator>Pichler, T</creator><creator>Simon, F</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9822-4309</orcidid><orcidid>https://orcid.org/0000-0001-5377-9896</orcidid></search><sort><creationdate>20200922</creationdate><title>Incidence of Quantum Confinement on Dark Triplet Excitons in Carbon Nanotubes</title><author>Palotás, J ; Negyedi, M ; Kollarics, S ; Bojtor, A ; Rohringer, P ; Pichler, T ; Simon, F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a406t-9e30dae0978a990276577ca0c11ec5e06ddb0fc278267fa19cedb0b2109960823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Palotás, J</creatorcontrib><creatorcontrib>Negyedi, M</creatorcontrib><creatorcontrib>Kollarics, S</creatorcontrib><creatorcontrib>Bojtor, A</creatorcontrib><creatorcontrib>Rohringer, P</creatorcontrib><creatorcontrib>Pichler, T</creatorcontrib><creatorcontrib>Simon, F</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Palotás, J</au><au>Negyedi, M</au><au>Kollarics, S</au><au>Bojtor, A</au><au>Rohringer, P</au><au>Pichler, T</au><au>Simon, F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Incidence of Quantum Confinement on Dark Triplet Excitons in Carbon Nanotubes</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2020-09-22</date><risdate>2020</risdate><volume>14</volume><issue>9</issue><spage>11254</spage><epage>11261</epage><pages>11254-11261</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>The photophysics of single-wall carbon nanotubes (SWCNTs) is intensively studied due to their potential application in light harvesting and optoelectronics. Excited states of SWCNTs form strongly bound electron–hole pairs, excitons, of which only singlet excitons participate in application relevant optical transitions. Long-living spin-triplet states hinder applications, but they emerge as candidates for quantum information storage. Therefore, knowledge of the triplet exciton energy structure, in particular in a SWCNT chirality dependent manner, is greatly desired. We report the observation of light emission from triplet state recombination, i.e., phosphorescence, for several SWCNT chiralities using a purpose-built spectrometer. This yields the singlet–triplet gap as a function of the SWCNT diameter, and it follows predictions based on quantum confinement effects. Saturation under high microwave power (up to 10 W) irradiation allows the spin-relaxation time for triplet states to be determined. Our study sensitively discriminates whether the lowest optically active state is populated from an excited state on the same nanotube or through Förster exciton energy transfer from a neighboring nanotube.</abstract><pub>American Chemical Society</pub><pmid>32790277</pmid><doi>10.1021/acsnano.0c03139</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-9822-4309</orcidid><orcidid>https://orcid.org/0000-0001-5377-9896</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2020-09, Vol.14 (9), p.11254-11261 |
issn | 1936-0851 1936-086X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7513465 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
title | Incidence of Quantum Confinement on Dark Triplet Excitons in Carbon Nanotubes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A34%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Incidence%20of%20Quantum%20Confinement%20on%20Dark%20Triplet%20Excitons%20in%20Carbon%20Nanotubes&rft.jtitle=ACS%20nano&rft.au=Palota%CC%81s,%20J&rft.date=2020-09-22&rft.volume=14&rft.issue=9&rft.spage=11254&rft.epage=11261&rft.pages=11254-11261&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.0c03139&rft_dat=%3Cproquest_pubme%3E2434472868%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a406t-9e30dae0978a990276577ca0c11ec5e06ddb0fc278267fa19cedb0b2109960823%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2434472868&rft_id=info:pmid/32790277&rfr_iscdi=true |