Loading…

Modeling Expected Shortfall Using Tail Entropy

Given the recent replacement of value-at-risk as the regulatory standard measure of risk with expected shortfall (ES) undertaken by the Basel Committee on Banking Supervision, it is imperative that ES gives correct estimates for the value of expected levels of losses in crisis situations. However, t...

Full description

Saved in:
Bibliographic Details
Published in:Entropy (Basel, Switzerland) Switzerland), 2019-12, Vol.21 (12), p.1204
Main Authors: Pele, Daniel Traian, Lazar, Emese, Mazurencu-Marinescu-Pele, Miruna
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c347t-fb191dc2401e03392cabd60b501cdb413fae0d479134219631e413664849fafc3
cites cdi_FETCH-LOGICAL-c347t-fb191dc2401e03392cabd60b501cdb413fae0d479134219631e413664849fafc3
container_end_page
container_issue 12
container_start_page 1204
container_title Entropy (Basel, Switzerland)
container_volume 21
creator Pele, Daniel Traian
Lazar, Emese
Mazurencu-Marinescu-Pele, Miruna
description Given the recent replacement of value-at-risk as the regulatory standard measure of risk with expected shortfall (ES) undertaken by the Basel Committee on Banking Supervision, it is imperative that ES gives correct estimates for the value of expected levels of losses in crisis situations. However, the measurement of ES is affected by a lack of observations in the tail of the distribution. While kernel-based smoothing techniques can be used to partially circumvent this problem, in this paper we propose a simple nonparametric tail measure of risk based on information entropy and compare its backtesting performance with that of other standard ES models.
doi_str_mv 10.3390/e21121204
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7514549</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548393900</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-fb191dc2401e03392cabd60b501cdb413fae0d479134219631e413664849fafc3</originalsourceid><addsrcrecordid>eNpVUE1LAzEUDKJgrR78BwuePGx9L8lum4sgpX5AxYPtOWSTbLtlu1mTXbH_3pSWoqc3vBlmhiHkFmHEmIAHSxEpUuBnZIAgRMoZwPkffEmuQtgAUEYxH5DRuzO2rppVMvtpre6sST7XznelqutkGfbEQlV1Mms679rdNbmITLA3xzsky-fZYvqazj9e3qZP81QzPu7SskCBRlMOaCH2oloVJociA9Sm4MhKZcHwsUDGKYqcoY3PPOcTLkpVajYkjwffti-21mgb41UtW19tld9Jpyr5n2mqtVy5bznOkGdcRIO7o4F3X70Nndy43jexs6QZnzARx4Kouj-otHcheFueEhDkfk952pP9AiUEZp0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548393900</pqid></control><display><type>article</type><title>Modeling Expected Shortfall Using Tail Entropy</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Directory of Open Access Journals</source><creator>Pele, Daniel Traian ; Lazar, Emese ; Mazurencu-Marinescu-Pele, Miruna</creator><creatorcontrib>Pele, Daniel Traian ; Lazar, Emese ; Mazurencu-Marinescu-Pele, Miruna</creatorcontrib><description>Given the recent replacement of value-at-risk as the regulatory standard measure of risk with expected shortfall (ES) undertaken by the Basel Committee on Banking Supervision, it is imperative that ES gives correct estimates for the value of expected levels of losses in crisis situations. However, the measurement of ES is affected by a lack of observations in the tail of the distribution. While kernel-based smoothing techniques can be used to partially circumvent this problem, in this paper we propose a simple nonparametric tail measure of risk based on information entropy and compare its backtesting performance with that of other standard ES models.</description><identifier>ISSN: 1099-4300</identifier><identifier>EISSN: 1099-4300</identifier><identifier>DOI: 10.3390/e21121204</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Bias ; Entropy ; Entropy (Information theory) ; Methods ; Monte Carlo simulation ; Regulation of financial institutions ; Risk ; Securities markets ; Stock exchanges ; Volatility</subject><ispartof>Entropy (Basel, Switzerland), 2019-12, Vol.21 (12), p.1204</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 by the authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-fb191dc2401e03392cabd60b501cdb413fae0d479134219631e413664849fafc3</citedby><cites>FETCH-LOGICAL-c347t-fb191dc2401e03392cabd60b501cdb413fae0d479134219631e413664849fafc3</cites><orcidid>0000-0002-5891-5495</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2548393900/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2548393900?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,25753,27924,27925,37012,44590,53791,53793,74998</link.rule.ids></links><search><creatorcontrib>Pele, Daniel Traian</creatorcontrib><creatorcontrib>Lazar, Emese</creatorcontrib><creatorcontrib>Mazurencu-Marinescu-Pele, Miruna</creatorcontrib><title>Modeling Expected Shortfall Using Tail Entropy</title><title>Entropy (Basel, Switzerland)</title><description>Given the recent replacement of value-at-risk as the regulatory standard measure of risk with expected shortfall (ES) undertaken by the Basel Committee on Banking Supervision, it is imperative that ES gives correct estimates for the value of expected levels of losses in crisis situations. However, the measurement of ES is affected by a lack of observations in the tail of the distribution. While kernel-based smoothing techniques can be used to partially circumvent this problem, in this paper we propose a simple nonparametric tail measure of risk based on information entropy and compare its backtesting performance with that of other standard ES models.</description><subject>Bias</subject><subject>Entropy</subject><subject>Entropy (Information theory)</subject><subject>Methods</subject><subject>Monte Carlo simulation</subject><subject>Regulation of financial institutions</subject><subject>Risk</subject><subject>Securities markets</subject><subject>Stock exchanges</subject><subject>Volatility</subject><issn>1099-4300</issn><issn>1099-4300</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpVUE1LAzEUDKJgrR78BwuePGx9L8lum4sgpX5AxYPtOWSTbLtlu1mTXbH_3pSWoqc3vBlmhiHkFmHEmIAHSxEpUuBnZIAgRMoZwPkffEmuQtgAUEYxH5DRuzO2rppVMvtpre6sST7XznelqutkGfbEQlV1Mms679rdNbmITLA3xzsky-fZYvqazj9e3qZP81QzPu7SskCBRlMOaCH2oloVJociA9Sm4MhKZcHwsUDGKYqcoY3PPOcTLkpVajYkjwffti-21mgb41UtW19tld9Jpyr5n2mqtVy5bznOkGdcRIO7o4F3X70Nndy43jexs6QZnzARx4Kouj-otHcheFueEhDkfk952pP9AiUEZp0</recordid><startdate>20191207</startdate><enddate>20191207</enddate><creator>Pele, Daniel Traian</creator><creator>Lazar, Emese</creator><creator>Mazurencu-Marinescu-Pele, Miruna</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5891-5495</orcidid></search><sort><creationdate>20191207</creationdate><title>Modeling Expected Shortfall Using Tail Entropy</title><author>Pele, Daniel Traian ; Lazar, Emese ; Mazurencu-Marinescu-Pele, Miruna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-fb191dc2401e03392cabd60b501cdb413fae0d479134219631e413664849fafc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bias</topic><topic>Entropy</topic><topic>Entropy (Information theory)</topic><topic>Methods</topic><topic>Monte Carlo simulation</topic><topic>Regulation of financial institutions</topic><topic>Risk</topic><topic>Securities markets</topic><topic>Stock exchanges</topic><topic>Volatility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pele, Daniel Traian</creatorcontrib><creatorcontrib>Lazar, Emese</creatorcontrib><creatorcontrib>Mazurencu-Marinescu-Pele, Miruna</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Entropy (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pele, Daniel Traian</au><au>Lazar, Emese</au><au>Mazurencu-Marinescu-Pele, Miruna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling Expected Shortfall Using Tail Entropy</atitle><jtitle>Entropy (Basel, Switzerland)</jtitle><date>2019-12-07</date><risdate>2019</risdate><volume>21</volume><issue>12</issue><spage>1204</spage><pages>1204-</pages><issn>1099-4300</issn><eissn>1099-4300</eissn><abstract>Given the recent replacement of value-at-risk as the regulatory standard measure of risk with expected shortfall (ES) undertaken by the Basel Committee on Banking Supervision, it is imperative that ES gives correct estimates for the value of expected levels of losses in crisis situations. However, the measurement of ES is affected by a lack of observations in the tail of the distribution. While kernel-based smoothing techniques can be used to partially circumvent this problem, in this paper we propose a simple nonparametric tail measure of risk based on information entropy and compare its backtesting performance with that of other standard ES models.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/e21121204</doi><orcidid>https://orcid.org/0000-0002-5891-5495</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1099-4300
ispartof Entropy (Basel, Switzerland), 2019-12, Vol.21 (12), p.1204
issn 1099-4300
1099-4300
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7514549
source Publicly Available Content Database; PubMed Central; Directory of Open Access Journals
subjects Bias
Entropy
Entropy (Information theory)
Methods
Monte Carlo simulation
Regulation of financial institutions
Risk
Securities markets
Stock exchanges
Volatility
title Modeling Expected Shortfall Using Tail Entropy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A07%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20Expected%20Shortfall%20Using%20Tail%20Entropy&rft.jtitle=Entropy%20(Basel,%20Switzerland)&rft.au=Pele,%20Daniel%20Traian&rft.date=2019-12-07&rft.volume=21&rft.issue=12&rft.spage=1204&rft.pages=1204-&rft.issn=1099-4300&rft.eissn=1099-4300&rft_id=info:doi/10.3390/e21121204&rft_dat=%3Cproquest_pubme%3E2548393900%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c347t-fb191dc2401e03392cabd60b501cdb413fae0d479134219631e413664849fafc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2548393900&rft_id=info:pmid/&rfr_iscdi=true