Loading…
Modeling Expected Shortfall Using Tail Entropy
Given the recent replacement of value-at-risk as the regulatory standard measure of risk with expected shortfall (ES) undertaken by the Basel Committee on Banking Supervision, it is imperative that ES gives correct estimates for the value of expected levels of losses in crisis situations. However, t...
Saved in:
Published in: | Entropy (Basel, Switzerland) Switzerland), 2019-12, Vol.21 (12), p.1204 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c347t-fb191dc2401e03392cabd60b501cdb413fae0d479134219631e413664849fafc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c347t-fb191dc2401e03392cabd60b501cdb413fae0d479134219631e413664849fafc3 |
container_end_page | |
container_issue | 12 |
container_start_page | 1204 |
container_title | Entropy (Basel, Switzerland) |
container_volume | 21 |
creator | Pele, Daniel Traian Lazar, Emese Mazurencu-Marinescu-Pele, Miruna |
description | Given the recent replacement of value-at-risk as the regulatory standard measure of risk with expected shortfall (ES) undertaken by the Basel Committee on Banking Supervision, it is imperative that ES gives correct estimates for the value of expected levels of losses in crisis situations. However, the measurement of ES is affected by a lack of observations in the tail of the distribution. While kernel-based smoothing techniques can be used to partially circumvent this problem, in this paper we propose a simple nonparametric tail measure of risk based on information entropy and compare its backtesting performance with that of other standard ES models. |
doi_str_mv | 10.3390/e21121204 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7514549</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548393900</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-fb191dc2401e03392cabd60b501cdb413fae0d479134219631e413664849fafc3</originalsourceid><addsrcrecordid>eNpVUE1LAzEUDKJgrR78BwuePGx9L8lum4sgpX5AxYPtOWSTbLtlu1mTXbH_3pSWoqc3vBlmhiHkFmHEmIAHSxEpUuBnZIAgRMoZwPkffEmuQtgAUEYxH5DRuzO2rppVMvtpre6sST7XznelqutkGfbEQlV1Mms679rdNbmITLA3xzsky-fZYvqazj9e3qZP81QzPu7SskCBRlMOaCH2oloVJociA9Sm4MhKZcHwsUDGKYqcoY3PPOcTLkpVajYkjwffti-21mgb41UtW19tld9Jpyr5n2mqtVy5bznOkGdcRIO7o4F3X70Nndy43jexs6QZnzARx4Kouj-otHcheFueEhDkfk952pP9AiUEZp0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548393900</pqid></control><display><type>article</type><title>Modeling Expected Shortfall Using Tail Entropy</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Directory of Open Access Journals</source><creator>Pele, Daniel Traian ; Lazar, Emese ; Mazurencu-Marinescu-Pele, Miruna</creator><creatorcontrib>Pele, Daniel Traian ; Lazar, Emese ; Mazurencu-Marinescu-Pele, Miruna</creatorcontrib><description>Given the recent replacement of value-at-risk as the regulatory standard measure of risk with expected shortfall (ES) undertaken by the Basel Committee on Banking Supervision, it is imperative that ES gives correct estimates for the value of expected levels of losses in crisis situations. However, the measurement of ES is affected by a lack of observations in the tail of the distribution. While kernel-based smoothing techniques can be used to partially circumvent this problem, in this paper we propose a simple nonparametric tail measure of risk based on information entropy and compare its backtesting performance with that of other standard ES models.</description><identifier>ISSN: 1099-4300</identifier><identifier>EISSN: 1099-4300</identifier><identifier>DOI: 10.3390/e21121204</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Bias ; Entropy ; Entropy (Information theory) ; Methods ; Monte Carlo simulation ; Regulation of financial institutions ; Risk ; Securities markets ; Stock exchanges ; Volatility</subject><ispartof>Entropy (Basel, Switzerland), 2019-12, Vol.21 (12), p.1204</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 by the authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-fb191dc2401e03392cabd60b501cdb413fae0d479134219631e413664849fafc3</citedby><cites>FETCH-LOGICAL-c347t-fb191dc2401e03392cabd60b501cdb413fae0d479134219631e413664849fafc3</cites><orcidid>0000-0002-5891-5495</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2548393900/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2548393900?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,25753,27924,27925,37012,44590,53791,53793,74998</link.rule.ids></links><search><creatorcontrib>Pele, Daniel Traian</creatorcontrib><creatorcontrib>Lazar, Emese</creatorcontrib><creatorcontrib>Mazurencu-Marinescu-Pele, Miruna</creatorcontrib><title>Modeling Expected Shortfall Using Tail Entropy</title><title>Entropy (Basel, Switzerland)</title><description>Given the recent replacement of value-at-risk as the regulatory standard measure of risk with expected shortfall (ES) undertaken by the Basel Committee on Banking Supervision, it is imperative that ES gives correct estimates for the value of expected levels of losses in crisis situations. However, the measurement of ES is affected by a lack of observations in the tail of the distribution. While kernel-based smoothing techniques can be used to partially circumvent this problem, in this paper we propose a simple nonparametric tail measure of risk based on information entropy and compare its backtesting performance with that of other standard ES models.</description><subject>Bias</subject><subject>Entropy</subject><subject>Entropy (Information theory)</subject><subject>Methods</subject><subject>Monte Carlo simulation</subject><subject>Regulation of financial institutions</subject><subject>Risk</subject><subject>Securities markets</subject><subject>Stock exchanges</subject><subject>Volatility</subject><issn>1099-4300</issn><issn>1099-4300</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpVUE1LAzEUDKJgrR78BwuePGx9L8lum4sgpX5AxYPtOWSTbLtlu1mTXbH_3pSWoqc3vBlmhiHkFmHEmIAHSxEpUuBnZIAgRMoZwPkffEmuQtgAUEYxH5DRuzO2rppVMvtpre6sST7XznelqutkGfbEQlV1Mms679rdNbmITLA3xzsky-fZYvqazj9e3qZP81QzPu7SskCBRlMOaCH2oloVJociA9Sm4MhKZcHwsUDGKYqcoY3PPOcTLkpVajYkjwffti-21mgb41UtW19tld9Jpyr5n2mqtVy5bznOkGdcRIO7o4F3X70Nndy43jexs6QZnzARx4Kouj-otHcheFueEhDkfk952pP9AiUEZp0</recordid><startdate>20191207</startdate><enddate>20191207</enddate><creator>Pele, Daniel Traian</creator><creator>Lazar, Emese</creator><creator>Mazurencu-Marinescu-Pele, Miruna</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5891-5495</orcidid></search><sort><creationdate>20191207</creationdate><title>Modeling Expected Shortfall Using Tail Entropy</title><author>Pele, Daniel Traian ; Lazar, Emese ; Mazurencu-Marinescu-Pele, Miruna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-fb191dc2401e03392cabd60b501cdb413fae0d479134219631e413664849fafc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bias</topic><topic>Entropy</topic><topic>Entropy (Information theory)</topic><topic>Methods</topic><topic>Monte Carlo simulation</topic><topic>Regulation of financial institutions</topic><topic>Risk</topic><topic>Securities markets</topic><topic>Stock exchanges</topic><topic>Volatility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pele, Daniel Traian</creatorcontrib><creatorcontrib>Lazar, Emese</creatorcontrib><creatorcontrib>Mazurencu-Marinescu-Pele, Miruna</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Entropy (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pele, Daniel Traian</au><au>Lazar, Emese</au><au>Mazurencu-Marinescu-Pele, Miruna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling Expected Shortfall Using Tail Entropy</atitle><jtitle>Entropy (Basel, Switzerland)</jtitle><date>2019-12-07</date><risdate>2019</risdate><volume>21</volume><issue>12</issue><spage>1204</spage><pages>1204-</pages><issn>1099-4300</issn><eissn>1099-4300</eissn><abstract>Given the recent replacement of value-at-risk as the regulatory standard measure of risk with expected shortfall (ES) undertaken by the Basel Committee on Banking Supervision, it is imperative that ES gives correct estimates for the value of expected levels of losses in crisis situations. However, the measurement of ES is affected by a lack of observations in the tail of the distribution. While kernel-based smoothing techniques can be used to partially circumvent this problem, in this paper we propose a simple nonparametric tail measure of risk based on information entropy and compare its backtesting performance with that of other standard ES models.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/e21121204</doi><orcidid>https://orcid.org/0000-0002-5891-5495</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1099-4300 |
ispartof | Entropy (Basel, Switzerland), 2019-12, Vol.21 (12), p.1204 |
issn | 1099-4300 1099-4300 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7514549 |
source | Publicly Available Content Database; PubMed Central; Directory of Open Access Journals |
subjects | Bias Entropy Entropy (Information theory) Methods Monte Carlo simulation Regulation of financial institutions Risk Securities markets Stock exchanges Volatility |
title | Modeling Expected Shortfall Using Tail Entropy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A07%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20Expected%20Shortfall%20Using%20Tail%20Entropy&rft.jtitle=Entropy%20(Basel,%20Switzerland)&rft.au=Pele,%20Daniel%20Traian&rft.date=2019-12-07&rft.volume=21&rft.issue=12&rft.spage=1204&rft.pages=1204-&rft.issn=1099-4300&rft.eissn=1099-4300&rft_id=info:doi/10.3390/e21121204&rft_dat=%3Cproquest_pubme%3E2548393900%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c347t-fb191dc2401e03392cabd60b501cdb413fae0d479134219631e413664849fafc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2548393900&rft_id=info:pmid/&rfr_iscdi=true |