Loading…

Quantum Reactivity: An Indicator of Quantum Correlation

Geometry is often a valuable guide to complex problems in physics. In this paper, we introduce a novel geometric quantity called quantum reactivity (QR) to probe quantum correlations in higher-dimensional quantum systems. Much like quantum discord, QR is not a measure of quantum entanglement but can...

Full description

Saved in:
Bibliographic Details
Published in:Entropy (Basel, Switzerland) Switzerland), 2020-01, Vol.22 (1), p.6
Main Authors: Aslmarand, Shahabeddin M., Miller, Warner A., Rana, Verinder S., Alsing, Paul M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c380t-8a7f7c6fbc6da37259361ab0b8ca0926d7cf1bb21e1675a4c2240bca0dae4fb03
cites cdi_FETCH-LOGICAL-c380t-8a7f7c6fbc6da37259361ab0b8ca0926d7cf1bb21e1675a4c2240bca0dae4fb03
container_end_page
container_issue 1
container_start_page 6
container_title Entropy (Basel, Switzerland)
container_volume 22
creator Aslmarand, Shahabeddin M.
Miller, Warner A.
Rana, Verinder S.
Alsing, Paul M.
description Geometry is often a valuable guide to complex problems in physics. In this paper, we introduce a novel geometric quantity called quantum reactivity (QR) to probe quantum correlations in higher-dimensional quantum systems. Much like quantum discord, QR is not a measure of quantum entanglement but can be useful in quantum information processes where a notion of quantum correlation in higher dimensions is needed. Both quantum discord and QR are extendable to an arbitrarily large number of qubits; however, unlike discord, QR satisfies the invariance under unitary operations. Our approach parallels Schumacher’s singlet state triangle inequality, which used an information geometry-based entropic distance. We use a generalization of information distance to area, volume, and higher-dimensional volumes and then use these to define a quantity that we call QR, which is the familiar ratio of surface area to volume. We examine a spectrum of multipartite states (Werner, W, GHZ, randomly generated density matrices, etc.) and demonstrate that QR can provide an ordering of these quantum states as to their degree of quantum correlation.
doi_str_mv 10.3390/e22010006
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7516491</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2468340305</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-8a7f7c6fbc6da37259361ab0b8ca0926d7cf1bb21e1675a4c2240bca0dae4fb03</originalsourceid><addsrcrecordid>eNpdkd1LwzAUxYMobk4f_A8KvuhD9eajSeuDMIYfg4Eo-hySNNWMrplJO9h_b8fmUJ_uhfPjcO85CJ1juKa0gBtLCGAA4AdoiKEoUkYBDn_tA3QS4xyAUIL5MRpQSvJM5HiIxEunmrZbJK9WmdatXLu-TcZNMm1KZ1TrQ-Kr5IeZ-BBsrVrnm1N0VKk62rPdHKH3h_u3yVM6e36cTsaz1NAc2jRXohKGV9rwUlFBsoJyrDTo3CgoCC-FqbDWBFvMRaaYIYSB7rVSWVZpoCN0t_VddnphS2ObNqhaLoNbqLCWXjn5V2ncp_zwKykyzFmBe4PLnUHwX52NrVy4aGxdq8b6LkrCeE4ZUMh69OIfOvddaPr3JMlY3ict-Ia62lIm-BiDrfbHYJCbOuS-DvoNqTN6wA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548390765</pqid></control><display><type>article</type><title>Quantum Reactivity: An Indicator of Quantum Correlation</title><source>PMC (PubMed Central)</source><source>DOAJ Directory of Open Access Journals</source><source>Publicly Available Content (ProQuest)</source><creator>Aslmarand, Shahabeddin M. ; Miller, Warner A. ; Rana, Verinder S. ; Alsing, Paul M.</creator><creatorcontrib>Aslmarand, Shahabeddin M. ; Miller, Warner A. ; Rana, Verinder S. ; Alsing, Paul M.</creatorcontrib><description>Geometry is often a valuable guide to complex problems in physics. In this paper, we introduce a novel geometric quantity called quantum reactivity (QR) to probe quantum correlations in higher-dimensional quantum systems. Much like quantum discord, QR is not a measure of quantum entanglement but can be useful in quantum information processes where a notion of quantum correlation in higher dimensions is needed. Both quantum discord and QR are extendable to an arbitrarily large number of qubits; however, unlike discord, QR satisfies the invariance under unitary operations. Our approach parallels Schumacher’s singlet state triangle inequality, which used an information geometry-based entropic distance. We use a generalization of information distance to area, volume, and higher-dimensional volumes and then use these to define a quantity that we call QR, which is the familiar ratio of surface area to volume. We examine a spectrum of multipartite states (Werner, W, GHZ, randomly generated density matrices, etc.) and demonstrate that QR can provide an ordering of these quantum states as to their degree of quantum correlation.</description><identifier>ISSN: 1099-4300</identifier><identifier>EISSN: 1099-4300</identifier><identifier>DOI: 10.3390/e22010006</identifier><identifier>PMID: 33285781</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Correlation ; Geometry ; Probability ; Probability distribution ; Quantum computing ; Quantum entanglement ; Quantum mechanics ; Quantum phenomena ; Qubits (quantum computing) ; Random variables ; Sensors ; Triangles</subject><ispartof>Entropy (Basel, Switzerland), 2020-01, Vol.22 (1), p.6</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 by the authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-8a7f7c6fbc6da37259361ab0b8ca0926d7cf1bb21e1675a4c2240bca0dae4fb03</citedby><cites>FETCH-LOGICAL-c380t-8a7f7c6fbc6da37259361ab0b8ca0926d7cf1bb21e1675a4c2240bca0dae4fb03</cites><orcidid>0000-0001-5772-3937 ; 0000-0002-5883-3596</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2548390765/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2548390765?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,25752,27923,27924,37011,37012,44589,53790,53792,74897</link.rule.ids></links><search><creatorcontrib>Aslmarand, Shahabeddin M.</creatorcontrib><creatorcontrib>Miller, Warner A.</creatorcontrib><creatorcontrib>Rana, Verinder S.</creatorcontrib><creatorcontrib>Alsing, Paul M.</creatorcontrib><title>Quantum Reactivity: An Indicator of Quantum Correlation</title><title>Entropy (Basel, Switzerland)</title><description>Geometry is often a valuable guide to complex problems in physics. In this paper, we introduce a novel geometric quantity called quantum reactivity (QR) to probe quantum correlations in higher-dimensional quantum systems. Much like quantum discord, QR is not a measure of quantum entanglement but can be useful in quantum information processes where a notion of quantum correlation in higher dimensions is needed. Both quantum discord and QR are extendable to an arbitrarily large number of qubits; however, unlike discord, QR satisfies the invariance under unitary operations. Our approach parallels Schumacher’s singlet state triangle inequality, which used an information geometry-based entropic distance. We use a generalization of information distance to area, volume, and higher-dimensional volumes and then use these to define a quantity that we call QR, which is the familiar ratio of surface area to volume. We examine a spectrum of multipartite states (Werner, W, GHZ, randomly generated density matrices, etc.) and demonstrate that QR can provide an ordering of these quantum states as to their degree of quantum correlation.</description><subject>Correlation</subject><subject>Geometry</subject><subject>Probability</subject><subject>Probability distribution</subject><subject>Quantum computing</subject><subject>Quantum entanglement</subject><subject>Quantum mechanics</subject><subject>Quantum phenomena</subject><subject>Qubits (quantum computing)</subject><subject>Random variables</subject><subject>Sensors</subject><subject>Triangles</subject><issn>1099-4300</issn><issn>1099-4300</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkd1LwzAUxYMobk4f_A8KvuhD9eajSeuDMIYfg4Eo-hySNNWMrplJO9h_b8fmUJ_uhfPjcO85CJ1juKa0gBtLCGAA4AdoiKEoUkYBDn_tA3QS4xyAUIL5MRpQSvJM5HiIxEunmrZbJK9WmdatXLu-TcZNMm1KZ1TrQ-Kr5IeZ-BBsrVrnm1N0VKk62rPdHKH3h_u3yVM6e36cTsaz1NAc2jRXohKGV9rwUlFBsoJyrDTo3CgoCC-FqbDWBFvMRaaYIYSB7rVSWVZpoCN0t_VddnphS2ObNqhaLoNbqLCWXjn5V2ncp_zwKykyzFmBe4PLnUHwX52NrVy4aGxdq8b6LkrCeE4ZUMh69OIfOvddaPr3JMlY3ict-Ia62lIm-BiDrfbHYJCbOuS-DvoNqTN6wA</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Aslmarand, Shahabeddin M.</creator><creator>Miller, Warner A.</creator><creator>Rana, Verinder S.</creator><creator>Alsing, Paul M.</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5772-3937</orcidid><orcidid>https://orcid.org/0000-0002-5883-3596</orcidid></search><sort><creationdate>20200101</creationdate><title>Quantum Reactivity: An Indicator of Quantum Correlation</title><author>Aslmarand, Shahabeddin M. ; Miller, Warner A. ; Rana, Verinder S. ; Alsing, Paul M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-8a7f7c6fbc6da37259361ab0b8ca0926d7cf1bb21e1675a4c2240bca0dae4fb03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Correlation</topic><topic>Geometry</topic><topic>Probability</topic><topic>Probability distribution</topic><topic>Quantum computing</topic><topic>Quantum entanglement</topic><topic>Quantum mechanics</topic><topic>Quantum phenomena</topic><topic>Qubits (quantum computing)</topic><topic>Random variables</topic><topic>Sensors</topic><topic>Triangles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aslmarand, Shahabeddin M.</creatorcontrib><creatorcontrib>Miller, Warner A.</creatorcontrib><creatorcontrib>Rana, Verinder S.</creatorcontrib><creatorcontrib>Alsing, Paul M.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Entropy (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aslmarand, Shahabeddin M.</au><au>Miller, Warner A.</au><au>Rana, Verinder S.</au><au>Alsing, Paul M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum Reactivity: An Indicator of Quantum Correlation</atitle><jtitle>Entropy (Basel, Switzerland)</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>22</volume><issue>1</issue><spage>6</spage><pages>6-</pages><issn>1099-4300</issn><eissn>1099-4300</eissn><abstract>Geometry is often a valuable guide to complex problems in physics. In this paper, we introduce a novel geometric quantity called quantum reactivity (QR) to probe quantum correlations in higher-dimensional quantum systems. Much like quantum discord, QR is not a measure of quantum entanglement but can be useful in quantum information processes where a notion of quantum correlation in higher dimensions is needed. Both quantum discord and QR are extendable to an arbitrarily large number of qubits; however, unlike discord, QR satisfies the invariance under unitary operations. Our approach parallels Schumacher’s singlet state triangle inequality, which used an information geometry-based entropic distance. We use a generalization of information distance to area, volume, and higher-dimensional volumes and then use these to define a quantity that we call QR, which is the familiar ratio of surface area to volume. We examine a spectrum of multipartite states (Werner, W, GHZ, randomly generated density matrices, etc.) and demonstrate that QR can provide an ordering of these quantum states as to their degree of quantum correlation.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>33285781</pmid><doi>10.3390/e22010006</doi><orcidid>https://orcid.org/0000-0001-5772-3937</orcidid><orcidid>https://orcid.org/0000-0002-5883-3596</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1099-4300
ispartof Entropy (Basel, Switzerland), 2020-01, Vol.22 (1), p.6
issn 1099-4300
1099-4300
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7516491
source PMC (PubMed Central); DOAJ Directory of Open Access Journals; Publicly Available Content (ProQuest)
subjects Correlation
Geometry
Probability
Probability distribution
Quantum computing
Quantum entanglement
Quantum mechanics
Quantum phenomena
Qubits (quantum computing)
Random variables
Sensors
Triangles
title Quantum Reactivity: An Indicator of Quantum Correlation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T03%3A02%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20Reactivity:%20An%20Indicator%20of%20Quantum%20Correlation&rft.jtitle=Entropy%20(Basel,%20Switzerland)&rft.au=Aslmarand,%20Shahabeddin%20M.&rft.date=2020-01-01&rft.volume=22&rft.issue=1&rft.spage=6&rft.pages=6-&rft.issn=1099-4300&rft.eissn=1099-4300&rft_id=info:doi/10.3390/e22010006&rft_dat=%3Cproquest_pubme%3E2468340305%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c380t-8a7f7c6fbc6da37259361ab0b8ca0926d7cf1bb21e1675a4c2240bca0dae4fb03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2548390765&rft_id=info:pmid/33285781&rfr_iscdi=true