Loading…
Quantum Reactivity: An Indicator of Quantum Correlation
Geometry is often a valuable guide to complex problems in physics. In this paper, we introduce a novel geometric quantity called quantum reactivity (QR) to probe quantum correlations in higher-dimensional quantum systems. Much like quantum discord, QR is not a measure of quantum entanglement but can...
Saved in:
Published in: | Entropy (Basel, Switzerland) Switzerland), 2020-01, Vol.22 (1), p.6 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c380t-8a7f7c6fbc6da37259361ab0b8ca0926d7cf1bb21e1675a4c2240bca0dae4fb03 |
---|---|
cites | cdi_FETCH-LOGICAL-c380t-8a7f7c6fbc6da37259361ab0b8ca0926d7cf1bb21e1675a4c2240bca0dae4fb03 |
container_end_page | |
container_issue | 1 |
container_start_page | 6 |
container_title | Entropy (Basel, Switzerland) |
container_volume | 22 |
creator | Aslmarand, Shahabeddin M. Miller, Warner A. Rana, Verinder S. Alsing, Paul M. |
description | Geometry is often a valuable guide to complex problems in physics. In this paper, we introduce a novel geometric quantity called quantum reactivity (QR) to probe quantum correlations in higher-dimensional quantum systems. Much like quantum discord, QR is not a measure of quantum entanglement but can be useful in quantum information processes where a notion of quantum correlation in higher dimensions is needed. Both quantum discord and QR are extendable to an arbitrarily large number of qubits; however, unlike discord, QR satisfies the invariance under unitary operations. Our approach parallels Schumacher’s singlet state triangle inequality, which used an information geometry-based entropic distance. We use a generalization of information distance to area, volume, and higher-dimensional volumes and then use these to define a quantity that we call QR, which is the familiar ratio of surface area to volume. We examine a spectrum of multipartite states (Werner, W, GHZ, randomly generated density matrices, etc.) and demonstrate that QR can provide an ordering of these quantum states as to their degree of quantum correlation. |
doi_str_mv | 10.3390/e22010006 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7516491</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2468340305</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-8a7f7c6fbc6da37259361ab0b8ca0926d7cf1bb21e1675a4c2240bca0dae4fb03</originalsourceid><addsrcrecordid>eNpdkd1LwzAUxYMobk4f_A8KvuhD9eajSeuDMIYfg4Eo-hySNNWMrplJO9h_b8fmUJ_uhfPjcO85CJ1juKa0gBtLCGAA4AdoiKEoUkYBDn_tA3QS4xyAUIL5MRpQSvJM5HiIxEunmrZbJK9WmdatXLu-TcZNMm1KZ1TrQ-Kr5IeZ-BBsrVrnm1N0VKk62rPdHKH3h_u3yVM6e36cTsaz1NAc2jRXohKGV9rwUlFBsoJyrDTo3CgoCC-FqbDWBFvMRaaYIYSB7rVSWVZpoCN0t_VddnphS2ObNqhaLoNbqLCWXjn5V2ncp_zwKykyzFmBe4PLnUHwX52NrVy4aGxdq8b6LkrCeE4ZUMh69OIfOvddaPr3JMlY3ict-Ia62lIm-BiDrfbHYJCbOuS-DvoNqTN6wA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548390765</pqid></control><display><type>article</type><title>Quantum Reactivity: An Indicator of Quantum Correlation</title><source>PMC (PubMed Central)</source><source>DOAJ Directory of Open Access Journals</source><source>Publicly Available Content (ProQuest)</source><creator>Aslmarand, Shahabeddin M. ; Miller, Warner A. ; Rana, Verinder S. ; Alsing, Paul M.</creator><creatorcontrib>Aslmarand, Shahabeddin M. ; Miller, Warner A. ; Rana, Verinder S. ; Alsing, Paul M.</creatorcontrib><description>Geometry is often a valuable guide to complex problems in physics. In this paper, we introduce a novel geometric quantity called quantum reactivity (QR) to probe quantum correlations in higher-dimensional quantum systems. Much like quantum discord, QR is not a measure of quantum entanglement but can be useful in quantum information processes where a notion of quantum correlation in higher dimensions is needed. Both quantum discord and QR are extendable to an arbitrarily large number of qubits; however, unlike discord, QR satisfies the invariance under unitary operations. Our approach parallels Schumacher’s singlet state triangle inequality, which used an information geometry-based entropic distance. We use a generalization of information distance to area, volume, and higher-dimensional volumes and then use these to define a quantity that we call QR, which is the familiar ratio of surface area to volume. We examine a spectrum of multipartite states (Werner, W, GHZ, randomly generated density matrices, etc.) and demonstrate that QR can provide an ordering of these quantum states as to their degree of quantum correlation.</description><identifier>ISSN: 1099-4300</identifier><identifier>EISSN: 1099-4300</identifier><identifier>DOI: 10.3390/e22010006</identifier><identifier>PMID: 33285781</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Correlation ; Geometry ; Probability ; Probability distribution ; Quantum computing ; Quantum entanglement ; Quantum mechanics ; Quantum phenomena ; Qubits (quantum computing) ; Random variables ; Sensors ; Triangles</subject><ispartof>Entropy (Basel, Switzerland), 2020-01, Vol.22 (1), p.6</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 by the authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-8a7f7c6fbc6da37259361ab0b8ca0926d7cf1bb21e1675a4c2240bca0dae4fb03</citedby><cites>FETCH-LOGICAL-c380t-8a7f7c6fbc6da37259361ab0b8ca0926d7cf1bb21e1675a4c2240bca0dae4fb03</cites><orcidid>0000-0001-5772-3937 ; 0000-0002-5883-3596</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2548390765/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2548390765?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,25752,27923,27924,37011,37012,44589,53790,53792,74897</link.rule.ids></links><search><creatorcontrib>Aslmarand, Shahabeddin M.</creatorcontrib><creatorcontrib>Miller, Warner A.</creatorcontrib><creatorcontrib>Rana, Verinder S.</creatorcontrib><creatorcontrib>Alsing, Paul M.</creatorcontrib><title>Quantum Reactivity: An Indicator of Quantum Correlation</title><title>Entropy (Basel, Switzerland)</title><description>Geometry is often a valuable guide to complex problems in physics. In this paper, we introduce a novel geometric quantity called quantum reactivity (QR) to probe quantum correlations in higher-dimensional quantum systems. Much like quantum discord, QR is not a measure of quantum entanglement but can be useful in quantum information processes where a notion of quantum correlation in higher dimensions is needed. Both quantum discord and QR are extendable to an arbitrarily large number of qubits; however, unlike discord, QR satisfies the invariance under unitary operations. Our approach parallels Schumacher’s singlet state triangle inequality, which used an information geometry-based entropic distance. We use a generalization of information distance to area, volume, and higher-dimensional volumes and then use these to define a quantity that we call QR, which is the familiar ratio of surface area to volume. We examine a spectrum of multipartite states (Werner, W, GHZ, randomly generated density matrices, etc.) and demonstrate that QR can provide an ordering of these quantum states as to their degree of quantum correlation.</description><subject>Correlation</subject><subject>Geometry</subject><subject>Probability</subject><subject>Probability distribution</subject><subject>Quantum computing</subject><subject>Quantum entanglement</subject><subject>Quantum mechanics</subject><subject>Quantum phenomena</subject><subject>Qubits (quantum computing)</subject><subject>Random variables</subject><subject>Sensors</subject><subject>Triangles</subject><issn>1099-4300</issn><issn>1099-4300</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkd1LwzAUxYMobk4f_A8KvuhD9eajSeuDMIYfg4Eo-hySNNWMrplJO9h_b8fmUJ_uhfPjcO85CJ1juKa0gBtLCGAA4AdoiKEoUkYBDn_tA3QS4xyAUIL5MRpQSvJM5HiIxEunmrZbJK9WmdatXLu-TcZNMm1KZ1TrQ-Kr5IeZ-BBsrVrnm1N0VKk62rPdHKH3h_u3yVM6e36cTsaz1NAc2jRXohKGV9rwUlFBsoJyrDTo3CgoCC-FqbDWBFvMRaaYIYSB7rVSWVZpoCN0t_VddnphS2ObNqhaLoNbqLCWXjn5V2ncp_zwKykyzFmBe4PLnUHwX52NrVy4aGxdq8b6LkrCeE4ZUMh69OIfOvddaPr3JMlY3ict-Ia62lIm-BiDrfbHYJCbOuS-DvoNqTN6wA</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Aslmarand, Shahabeddin M.</creator><creator>Miller, Warner A.</creator><creator>Rana, Verinder S.</creator><creator>Alsing, Paul M.</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5772-3937</orcidid><orcidid>https://orcid.org/0000-0002-5883-3596</orcidid></search><sort><creationdate>20200101</creationdate><title>Quantum Reactivity: An Indicator of Quantum Correlation</title><author>Aslmarand, Shahabeddin M. ; Miller, Warner A. ; Rana, Verinder S. ; Alsing, Paul M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-8a7f7c6fbc6da37259361ab0b8ca0926d7cf1bb21e1675a4c2240bca0dae4fb03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Correlation</topic><topic>Geometry</topic><topic>Probability</topic><topic>Probability distribution</topic><topic>Quantum computing</topic><topic>Quantum entanglement</topic><topic>Quantum mechanics</topic><topic>Quantum phenomena</topic><topic>Qubits (quantum computing)</topic><topic>Random variables</topic><topic>Sensors</topic><topic>Triangles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aslmarand, Shahabeddin M.</creatorcontrib><creatorcontrib>Miller, Warner A.</creatorcontrib><creatorcontrib>Rana, Verinder S.</creatorcontrib><creatorcontrib>Alsing, Paul M.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Entropy (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aslmarand, Shahabeddin M.</au><au>Miller, Warner A.</au><au>Rana, Verinder S.</au><au>Alsing, Paul M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum Reactivity: An Indicator of Quantum Correlation</atitle><jtitle>Entropy (Basel, Switzerland)</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>22</volume><issue>1</issue><spage>6</spage><pages>6-</pages><issn>1099-4300</issn><eissn>1099-4300</eissn><abstract>Geometry is often a valuable guide to complex problems in physics. In this paper, we introduce a novel geometric quantity called quantum reactivity (QR) to probe quantum correlations in higher-dimensional quantum systems. Much like quantum discord, QR is not a measure of quantum entanglement but can be useful in quantum information processes where a notion of quantum correlation in higher dimensions is needed. Both quantum discord and QR are extendable to an arbitrarily large number of qubits; however, unlike discord, QR satisfies the invariance under unitary operations. Our approach parallels Schumacher’s singlet state triangle inequality, which used an information geometry-based entropic distance. We use a generalization of information distance to area, volume, and higher-dimensional volumes and then use these to define a quantity that we call QR, which is the familiar ratio of surface area to volume. We examine a spectrum of multipartite states (Werner, W, GHZ, randomly generated density matrices, etc.) and demonstrate that QR can provide an ordering of these quantum states as to their degree of quantum correlation.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>33285781</pmid><doi>10.3390/e22010006</doi><orcidid>https://orcid.org/0000-0001-5772-3937</orcidid><orcidid>https://orcid.org/0000-0002-5883-3596</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1099-4300 |
ispartof | Entropy (Basel, Switzerland), 2020-01, Vol.22 (1), p.6 |
issn | 1099-4300 1099-4300 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7516491 |
source | PMC (PubMed Central); DOAJ Directory of Open Access Journals; Publicly Available Content (ProQuest) |
subjects | Correlation Geometry Probability Probability distribution Quantum computing Quantum entanglement Quantum mechanics Quantum phenomena Qubits (quantum computing) Random variables Sensors Triangles |
title | Quantum Reactivity: An Indicator of Quantum Correlation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T03%3A02%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20Reactivity:%20An%20Indicator%20of%20Quantum%20Correlation&rft.jtitle=Entropy%20(Basel,%20Switzerland)&rft.au=Aslmarand,%20Shahabeddin%20M.&rft.date=2020-01-01&rft.volume=22&rft.issue=1&rft.spage=6&rft.pages=6-&rft.issn=1099-4300&rft.eissn=1099-4300&rft_id=info:doi/10.3390/e22010006&rft_dat=%3Cproquest_pubme%3E2468340305%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c380t-8a7f7c6fbc6da37259361ab0b8ca0926d7cf1bb21e1675a4c2240bca0dae4fb03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2548390765&rft_id=info:pmid/33285781&rfr_iscdi=true |