Loading…
Age-specific modulation of intermuscular beta coherence during gait before and after experimentally induced fatigue
We examined the effects of age on intermuscular beta-band (15–35 Hz) coherence during treadmill walking before and after experimentally induced fatigue. Older (n = 12) and younger (n = 12) adults walked on a treadmill at 1.2 m/s for 3 min before and after repetitive sit-to-stand, rSTS, to induce mus...
Saved in:
Published in: | Scientific reports 2020-09, Vol.10 (1), p.15854, Article 15854 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We examined the effects of age on intermuscular beta-band (15–35 Hz) coherence during treadmill walking before and after experimentally induced fatigue. Older (n = 12) and younger (n = 12) adults walked on a treadmill at 1.2 m/s for 3 min before and after repetitive sit-to-stand, rSTS, to induce muscle fatigability. We measured stride outcomes and coherence from 100 steps in the dominant leg for the synergistic (biceps femoris (BF)-semitendinosus, rectus femoris (RF)-vastus lateralis (VL), gastrocnemius lateralis (GL)-Soleus (SL), tibialis anterior (TA)-peroneus longus (PL)) and for the antagonistic (RF-BF and TA-GL) muscle pairs at late swing and early stance. Older vs. younger adults had 43–62% lower GL-SL, RF-VL coherence in swing and TA-PL and RF-VL coherence in stance. After rSTS, RF-BF coherence in late swing decreased by ~ 20% and TA-PL increased by 16% independent of age (p = 0.02). Also, GL-SL coherence decreased by ~ 23% and increased by ~ 23% in younger and older, respectively. Age affects the oscillatory coupling between synergistic muscle pairs, delivered presumably via corticospinal tracts, during treadmill walking. Muscle fatigability elicits age-specific changes in the common fluctuations in muscle activity, which could be interpreted as a compensation for muscle fatigability to maintain gait performance. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-020-72839-1 |